{ "cells": [ { "cell_type": "markdown", "source": [ "---\n", "title: \"Creating a Petastorm dataset from MNIST example\"\n", "date: 2021-05-03\n", "type: technical_note\n", "draft: false\n", "---" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Creating a Petastorm MNIST dataset\n", "In this notebook we are going to create a Petastorm dataset from the famous MNIST dataset. Compared to ImageNette it has the advantage of being easily available through PyTorch. It is also considerably smaller which makes it easier to experiment with." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting Spark application\n" ] }, { "data": { "text/html": [ "
ID | YARN Application ID | Kind | State | Spark UI | Driver log |
---|---|---|---|---|---|
181 | application_1617699042861_0008 | pyspark | idle | Link | Link |