{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Train Telecom Customer Churn Prediction with XGBoost" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial is based on [this](https://www.kaggle.com/pavanraj159/telecom-customer-churn-prediction/comments#6.-Model-Performances) Kaggle notebook and [this](https://github.com/gojek/feast/tree/master/examples/feast-xgboost-churn-prediction-tutorial) Feast notebook" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", "_kg_hide-input": false, "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting Spark application\n" ] }, { "data": { "text/html": [ "
ID | YARN Application ID | Kind | State | Spark UI | Driver log |
---|---|---|---|---|---|
13 | application_1592283535818_0014 | pyspark | idle | Link | Link |