
CUDNN LIBRARY

DU-06702-001_v5.1 | May 2016

User Guide

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 2

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 1

Chapter 1.
INTRODUCTION

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions
‣ LRN, LCN and batch normalization forward and backward

cuDNN's convolution routines aim for performance competitive with the fastest GEMM
(matrix multiply) based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its
routines. This flexibility allows easy integration into any neural network implementation
and avoids the input/output transposition steps sometimes necessary with GEMM-based
convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 2

Chapter 2.
GENERAL DESCRIPTION

2.1. Programming Model
The cuDNN Library exposes a Host API but assumes that for operations using the GPU,
the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate(). This handle is explicitly passed to every subsequent library function
that operates on GPU data. Once the application finishes using cuDNN, it can release
the resources associated with the library handle using cudnnDestroy() . This
approach allows the user to explicitly control the library's functioning when using
multiple host threads, GPUs and CUDA Streams. For example, an application can use
cudaSetDevice() to associate different devices with different host threads and in each
of those host threads, use a unique cuDNN handle which directs library calls to the
device associated with it. cuDNN library calls made with different handles will thus
automatically run on different devices. The device associated with a particular cuDNN
context is assumed to remain unchanged between the corresponding cudnnCreate()
and cudnnDestroy() calls. In order for the cuDNN library to use a different device
within the same host thread, the application must set the new device to be used by
calling cudaSetDevice() and then create another cuDNN context, which will be
associated with the new device, by calling cudnnCreate().

2.2. Notation
As of CUDNN v4 we have adopted a mathematicaly-inspired notation for layer inputs
and outputs using x,y,dx,dy,b,w for common layer parameters. This was done to
improve readability and ease of understanding of parameters meaning. All layers now
follow a uniform convention that during inference

y = layerFunction(x, otherParams).

And during backpropagation

(dx, dOtherParams) = layerFunctionGradient(x,y,dy,otherParams)

General Description

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 3

For convolution the notation is

y = x*w+b

where w is the matrix of filter weights, x is the previous layer's data (during
inference), y is the next layer's data, b is the bias and * is the convolution operator.
In backpropagation routines the parameters keep their meanings. dx,dy,dw,db
always refer to the gradient of the final network error function with respect to a given
parameter. So dy in all backpropagation routines always refers to error gradient
backpropagated through the network computation graph so far. Similarly other
parameters in more specialized layers, such as, for instance, dMeans or dBnBias refer to
gradients of the loss function wrt those parameters.

w is used in the API for both the width of the x tensor and convolution filter
matrix. To resolve this ambiguity we use w and filter notation interchangeably for
convolution filter weight matrix. The meaning is clear from the context since the
layer width is always referenced near it's height.

2.3. Tensor Descriptor
The cuDNN Library describes data holding images, videos and any other data with
contents with a generic n-D tensor defined with the following parameters :

‣ a dimension dim from 3 to 8
‣ a data type (32-bit floating point, 64 bit-floating point, 16 bit floating point...)
‣ dim integers defining the size of each dimension
‣ dim integers defining the stride of each dimension (e.g the number of elements to

add to reach the next element from the same dimension)

The first two dimensions define respectively the batch number n and the number of
features maps c. This tensor definition allows for example to have some dimensions
overlapping each others within the same tensor by having the stride of one dimension
smaller than the product of the dimension and the stride of the next dimension. In
cuDNN, unless specified otherwise, all routines will support tensors with overlapping
dimensions for forward pass input tensors, however, dimensions of the output tensors
cannot overlap. Even though this tensor format supports negative strides (which can be
useful for data mirroring), cuDNN routines do not support tensors with negative strides
unless specified otherwise.

2.3.1. WXYZ Tensor Descriptor
Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies :

‣ all the strides are strictly positive
‣ the dimensions referenced by the letters are sorted in decreasing order of their

respective strides

General Description

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 4

2.3.2. 4-D Tensor Descriptor
A 4-D Tensor descriptor is used to define the format for batches of 2D images with
4 letters : N,C,H,W for respectively the batch number, the number of feature maps,
the height and the width. The letters are sorted in decreasing order of the strides. The
commonly used 4-D tensor formats are :

‣ NCHW
‣ NHWC
‣ CHWN

2.3.3. 5-D Tensor Description
A 5-D Tensor descriptor is used to define the format of batch of 3D images with 5 letters :
N,C,D,H,W for respectively the batch number, the number of feature maps, the depth,
the height and the width. The letters are sorted in descreasing order of the strides. The
commonly used 5-D tensor formats are called :

‣ NCDHW
‣ NDHWC
‣ CDHWN

2.3.4. Fully-packed tensors
A tensor is defined as XYZ-fully-packed if and only if :

‣ the number of tensor dimensions is equal to the number of letters preceding the
fully-packed suffix.

‣ the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by
the (i+1)-th stride.

‣ the stride of the last dimension is 1.

2.3.5. Partially-packed tensors
The partially 'XYZ-packed' terminology only applies in a context of a tensor format
described with a superset of the letters used to define a partially-packed tensor. A
WXYZ tensor is defined as XYZ-packed if and only if :

‣ the strides of all dimensions NOT referenced in the -packed suffix are greater or
equal to the product of the next dimension by the next stride.

‣ the stride of each dimension referenced in the -packed suffix in position i is equal to
the product of the (i+1)-st dimension by the (i+1)-st stride.

‣ if last tensor's dimension is present in the -packed suffix, it's stride is 1.

For example a NHWC tensor WC-packed means that the c_stride is equal to 1 and
w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually with
slowest changing dimensions of a tensor but it is also possible to refer to a NCHW tensor
that is only N-packed.

General Description

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 5

2.3.6. Spatially packed tensors
Spatially-packed tensors are defined as partially-packed in spatial dimensions.

For example a spatially-packed 4D tensor would mean that the tensor is either NCHW
HW-packed or CNHW HW-packed.

2.3.7. Overlapping tensors
A tensor is defined to be overlapping if a iterating over a full range of dimensions
produces the same address more than once.

In practice an overlapped tensor will have stride[i-1] < stride[i]*dim[i] for some of the i
from [1,nbDims] interval.

2.4. Thread Safety
The library is thread safe and its functions can be called from multiple host threads,
even with the same handle. When sharing a handle across host threads, extreme care
needs to be taken to ensure that any changes to the handle configuration in one thread
do not adversely affect cuDNN function calls in others. This is especially true for the
destruction of the handle. It is not recommended that multiple threads share the same
cuDNN handle.

2.5. Reproducibility (determinism)
By design, most of cuDNN's routines from a given version generate the same bit-wise
results across runs when executed on GPUs with the same architecture and the same
number of SMs. However, bit-wise reproducibility is not guaranteed across versions,
as the implementation of a given routine may change. With the current release, the
following routines do not guarantee reproducibility because they use atomic operations:

‣ cudnnConvolutionBackwardFilter when
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 is used

‣ cudnnConvolutionBackwardData when
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 is used

‣ cudnnPoolingBackward when CUDNN_POOLING_MAX is used
‣ cudnnSpatialTfSamplerBackward

2.6. Scaling parameters alpha and beta
Many cuDNN routines like cudnnConvolutionForward take pointers to scaling
factors (in host memory), that are used to blend computed values with initial
values in the destination tensor as follows: dstValue = alpha[0]*computedValue +
beta[0]*priorDstValue. When beta[0] is zero, the output is not read and may contain any

General Description

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 6

uninitialized data (including NaN). The storage data type for alpha[0], beta[0] is float
for HALF and FLOAT tensors, and double for DOUBLE tensors. These parameters are
passed using a host memory pointer.

For improved performance it is advised to use beta[0] = 0.0. Use a non-zero value for
beta[0] only when blending with prior values stored in the output tensor is needed.

2.7. GPU and driver requirements
cuDNN v5.1 supports NVIDIA GPUs of compute capability 3.0 and higher and requires
an NVIDIA Driver compatible with CUDA Toolkit 7.5 (CUDA Toolkit 7.0 for ARM
platforms).

2.8. Backward compatibility and deprecation
policy
When changing the API of an existing cuDNN function "foo" (usually to support some
new functionality), first, a new routine "foo_v<n>" is created where n represents the
cuDNN version where the new API is first introduced, leaving "foo" untouched. This
ensures backward compatibility with the version n-1 of cuDNN. At this point, "foo" is
considered deprecated, and should be treated as such by users of cuDNN. We gradually
eliminate deprecated and suffixed API entries over the course of a few releases of the
library per the following policy:

‣ In release n+1, the legacy API entry "foo" is remapped to a new API "foo_v<f>"
where f is some cuDNN version anterior to n.

‣ Also in release n+1, the unsuffixed API entry "foo" is modified to have the same
signature as "foo_<n>". "foo_<n>" is retained as-is.

‣ The deprecated former API entry with an anterior suffix _v<f> and new API entry
with suffix _v<n> are maintained in this release.

‣ In release n+2, both suffixed entries of a given entry are removed.

As a rule of thumb, when a routine appears in two forms, one with a suffix and one with
no suffix, the non-suffixed entry is to be treated as deprecated. In this case, it is strongly
advised that users migrate to the new suffixed API entry to guarantee backwards
compatibility in the following cuDNN release. When a routine appears with multiple
suffixes, the unsuffixed API entry is mapped to the higher numbered suffix. In that
case it is strongly advised to use the non-suffixed API entry to guarantee backward
compatibiliy with the following cuDNN release.

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 7

Chapter 3.
CUDNN DATATYPES REFERENCE

This chapter describes all the types and enums of the cuDNN library API.

3.1. cudnnHandle_t
cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate() and the returned
handle must be passed to all subsequent library function calls. The context should be
destroyed at the end using cudnnDestroy(). The context is associated with only one
GPU device, the current device at the time of the call to cudnnCreate(). However
multiple contexts can be created on the same GPU device.

3.2. cudnnStatus_t
cudnnStatus_t is an enumerated type used for function status returns. All cuDNN
library functions return their status, which can be one of the following values:

Value Meaning

CUDNN_STATUS_SUCCESS The operation completed successfully.

CUDNN_STATUS_NOT_INITIALIZED The cuDNN library was not initialized properly.
This error is usually returned when a call to
cudnnCreate() fails or when cudnnCreate()
has not been called prior to calling another cuDNN
routine. In the former case, it is usually due
to an error in the CUDA Runtime API called by
cudnnCreate() or by an error in the hardware
setup.

CUDNN_STATUS_ALLOC_FAILED Resource allocation failed inside the cuDNN
library. This is usually caused by an internal
cudaMalloc() failure.

To correct: prior to the function call, deallocate
previously allocated memory as much as possible.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 8

Value Meaning

CUDNN_STATUS_BAD_PARAM An incorrect value or parameter was passed to the
function.

To correct: ensure that all the parameters being
passed have valid values.

CUDNN_STATUS_ARCH_MISMATCH The function requires a feature absent from
the current GPU device. Note that cuDNN only
supports devices with compute capabilities greater
than or equal to 3.0.

To correct: compile and run the application on a
device with appropriate compute capability.

CUDNN_STATUS_MAPPING_ERROR An access to GPU memory space failed, which is
usually caused by a failure to bind a texture.

To correct: prior to the function call, unbind any
previously bound textures.

Otherwise, this may indicate an internal error/bug
in the library.

CUDNN_STATUS_EXECUTION_FAILED The GPU program failed to execute. This is usually
caused by a failure to launch some cuDNN kernel
on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an
appropriate version of the driver, and the cuDNN
library are correctly installed.

Otherwise, this may indicate a internal error/bug
in the library.

CUDNN_STATUS_INTERNAL_ERROR An internal cuDNN operation failed.

CUDNN_STATUS_NOT_SUPPORTED The functionality requested is not presently
supported by cuDNN.

CUDNN_STATUS_LICENSE_ERROR The functionality requested requires some license
and an error was detected when trying to check
the current licensing. This error can happen if
the license is not present or is expired or if the
environment variable NVIDIA_LICENSE_FILE is not
set properly.

3.3. cudnnTensorDescriptor_t
cudnnCreateTensorDescriptor_t is a pointer to an opaque structure holding the
description of a generic n-D dataset. cudnnCreateTensorDescriptor() is used
to create one instance, and one of the routrines cudnnSetTensorNdDescriptor(),
cudnnSetTensor4dDescriptor() or cudnnSetTensor4dDescriptorEx() must be
used to initialize this instance.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 9

3.4. cudnnFilterDescriptor_t
cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor() is used to create one instance,
and cudnnSetFilterDescriptor() must be used to initialize this instance.

3.5. cudnnConvolutionDescriptor_t
cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the
description of a convolution operation. cudnnCreateConvolutionDescriptor()
is used to create one instance, and cudnnSetConvolutionNdDescriptor() or
cudnnSetConvolution2dDescriptor() must be used to initialize this instance.

3.6. cudnnNanPropagation_t
cudnnNanPropagation_t is an enumerated type used to indicate if some routines
should propagate Nan numbers. This enumerated type is used as a field for the
cudnnActivationDescriptor_t descriptor and cudnnPoolingDescriptor_t
descriptor.

Value Meaning

CUDNN_NOT_PROPAGATE_NAN Nan numbers are not propagated

CUDNN_PROPAGATE_NAN Nan numbers are propagated

3.7. cudnnActivationDescriptor_t
cudnnActivationDescriptor_t is a pointer to an opaque structure holding the
description of a activation operation. cudnnCreateActivationDescriptor() is used
to create one instance, and cudnnSetActivationDescriptor() must be used to
initialize this instance.

3.8. cudnnPoolingDescriptor_t
cudnnPoolingDescriptor_t is a pointer to an opaque structure holding
the description of a pooling operation. cudnnCreatePoolingDescriptor()
is used to create one instance, and cudnnSetPoolingNdDescriptor() or
cudnnSetPooling2dDescriptor() must be used to initialize this instance.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 10

3.9. cudnnOpTensorOp_t
cudnnOpTensorOp_t is an enumerated type used to indicate the tensor operation to be
used by the cudnnOpTensor() routine. This enumerated type is used as a field for the
cudnnOpTensorDescriptor_t descriptor.

Value Meaning

CUDNN_OP_TENSOR_ADD The operation to be performed is addition

CUDNN_OP_TENSOR_MUL The operation to be performed is multiplication

CUDNN_OP_TENSOR_MIN The operation to be performed is a minimum
comparison

CUDNN_OP_TENSOR_MAX The operation to be performed is a maximum
comparison

3.10. cudnnOpTensorDescriptor_t
cudnnOpTensorDescriptor_t is a pointer to an opaque structure holding the
description of a tensor operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and
cudnnSetOpTensorDescriptor() must be used to initialize this instance.

3.11. cudnnDataType_t
cudnnDataType_t is an enumerated type indicating the data type to which a tensor
descriptor or filter descriptor refers.

Value Meaning

CUDNN_DATA_FLOAT The data is 32-bit single-precision floating point
(float).

CUDNN_DATA_DOUBLE The data is 64-bit double-precision floating point
(double).

CUDNN_DATA_HALF The data is 16-bit floating point.

3.12. cudnnTensorFormat_t
cudnnTensorFormat_t is an enumerated type used by
cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout.

Value Meaning

CUDNN_TENSOR_NCHW This tensor format specifies that the data is laid
out in the following order: image, features map,

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 11

Value Meaning

rows, columns. The strides are implicitly defined
in such a way that the data are contiguous in
memory with no padding between images, feature
maps, rows, and columns; the columns are the
inner dimension and the images are the outermost
dimension.

CUDNN_TENSOR_NHWC This tensor format specifies that the data is laid
out in the following order: image, rows, columns,
features maps. The strides are implicitly defined in
such a way that the data are contiguous in memory
with no padding between images, rows, columns,
and features maps; the feature maps are the
inner dimension and the images are the outermost
dimension.

3.13. cudnnConvolutionMode_t
cudnnConvolutionMode_t is an enumerated type used by
cudnnSetConvolutionDescriptor() to configure a convolution descriptor. The
filter used for the convolution can be applied in two different ways, corresponding
mathematically to a convolution or to a cross-correlation. (A cross-correlation is
equivalent to a convolution with its filter rotated by 180 degrees.)

Value Meaning

CUDNN_CONVOLUTION In this mode, a convolution operation will be done
when applying the filter to the images.

CUDNN_CROSS_CORRELATION In this mode, a cross-correlation operation will be
done when applying the filter to the images.

3.14. cudnnConvolutionFwdPreference_t
cudnnConvolutionFwdPreference_t is an enumerated type used by
cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used
for the forward convolution.

Value Meaning

CUDNN_CONVOLUTION_FWD_NO_WORKSPACE In this configuration, the routine
cudnnGetConvolutionForwardAlgorithm() is
guaranteed to return an algorithm that does not
require any extra workspace to be provided by the
user.

CUDNN_CONVOLUTION_FWD_PREFER_FASTEST In this configuration, the routine
cudnnGetConvolutionForwardAlgorithm() will
return the fastest algorithm regardless how much
workspace is needed to execute it.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 12

Value Meaning

CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMITIn this configuration, the routine
cudnnGetConvolutionForwardAlgorithm() will
return the fastest algorithm that fits within the
memory limit that the user provided.

3.15. cudnnConvolutionFwdAlgo_t
cudnnConvolutionFwdAlgo_t is an enumerated type that exposes the different
algorithms available to execute the forward convolution operation.

Value Meaning

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM This algorithm expresses the convolution as a
matrix product without actually explicitly form the
matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMMThis algorithm expresses the convolution as a
matrix product without actually explicitly form
the matrix that holds the input tensor data, but
still needs some memory workspace to precompute
some indices in order to facilitate the implicit
construction of the matrix that holds the input
tensor data

CUDNN_CONVOLUTION_FWD_ALGO_GEMM This algorithm expresses the convolution as an
explicit matrix product. A significant memory
workspace is needed to store the matrix that holds
the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT This algorithm expresses the convolution as a
direct convolution (e.g without implicitly or
explicitly doing a matrix multiplication).

CUDNN_CONVOLUTION_FWD_ALGO_FFT This algorithm uses a Fast-Fourier Transform
approach to compute the convolution. A
significant memory workspace is needed to store
intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING This algorithm uses a Fast-Fourier Transform
approach but splits the inputs into 32x32 tiles. A
significant memory workspace is needed to store
intermediate results but significantly less than
CUDNN_CONVOLUTION_FWD_ALGO_FFT for big size
images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD This algorithm uses the Winograd Transform
approach to compute the convolution. A
reasonably sized workspace is needed to store
intermediate results.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSEDThis algorithm uses the Winograd Transform
approach to compute the convolution. Significant
workspace may be needed to store intermediate
results.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 13

3.16. cudnnConvolutionFwdAlgoPerf_t
cudnnConvolutionFwdAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionForwardAlgorithm().

Member Name Explanation

cudnnConvolutionFwdAlgo_t algo The algorithm run to obtain the associated
performance metrics.

cudnnStatus_t status If any error occurs during the workspace allocation
or timing of cudnnConvolutionForward(),
this status will represent that error. Otherwise,
this status will be the return status of
cudnnConvolutionForward().

‣ CUDNN_STATUS_ALLOC_FAILED if any error
occured during workspace allocation or if
provided workspace is insufficient.

‣ CUDNN_STATUS_INTERNAL_ERROR if any
error occured during timing calculations or
workspace deallocation.

‣ Otherwise, this will be the return status of
cudnnConvolutionForward().

float time The execution time of
cudnnConvolutionForward() (in milliseconds).

size_t memory The workspace size (in bytes).

3.17. cudnnConvolutionBwdFilterPreference_t
cudnnConvolutionBwdFilterPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardFilterAlgorithm() to help the choice of the
algorithm used for the backward filter convolution.

Value Meaning

CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE In this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm()
is guaranteed to return an algorithm that does not
require any extra workspace to be provided by the
user.

CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTESTIn this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm()
will return the fastest algorithm regardless how
much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMITIn this configuration, the routine
cudnnGetConvolutionBackwardFilterAlgorithm()
will return the fastest algorithm that fits within
the memory limit that the user provided.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 14

3.18. cudnnConvolutionBwdFilterAlgo_t
cudnnConvolutionBwdFilterAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward filter convolution operation.

Value Meaning

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 This algorithm expresses the convolution as a sum
of matrix product without actually explicitly form
the matrix that holds the input tensor data. The
sum is done using atomic adds operation, thus the
results are non-deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 This algorithm expresses the convolution as a
matrix product without actually explicitly form
the matrix that holds the input tensor data. The
results are deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT This algorithm uses a Fast-Fourier Transform
approach to compute the convolution. A
significant memory workspace is needed to
store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 This algorithm is similar to
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 but
uses some small workspace to precomputes some
indices. The results are also non-deterministic.

CUDNN_CONVOLUTION_BWD_FILTER_WINOGRAD_NONFUSEDThis algorithm uses the Winograd Transform
approach to compute the convolution. Significant
workspace may be needed to store intermediate
results. The results are deterministic.

3.19. cudnnConvolutionBwdFilterAlgoPerf_t
cudnnConvolutionBwdFilterAlgoPerf_t is a structure containing performance
results returned by cudnnFindConvolutionBackwardFilterAlgorithm().

Member Name Explanation

cudnnConvolutionBwdFilterAlgo_t algo The algorithm run to obtain the associated
performance metrics.

cudnnStatus_t status If any error occurs during the
workspace allocation or timing of
cudnnConvolutionBackwardFilter_v3(),
this status will represent that error. Otherwise,
this status will be the return status of
cudnnConvolutionBackwardFilter_v3().

‣ CUDNN_STATUS_ALLOC_FAILED if any error
occured during workspace allocation or if
provided workspace is insufficient.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 15

Member Name Explanation

‣ CUDNN_STATUS_INTERNAL_ERROR if any
error occured during timing calculations or
workspace deallocation.

‣ Otherwise, this will be the return status of
cudnnConvolutionBackwardFilter_v3().

float time The execution time of
cudnnConvolutionBackwardFilter_v3() (in
milliseconds).

size_t memory The workspace size (in bytes).

3.20. cudnnConvolutionBwdDataPreference_t
cudnnConvolutionBwdDataPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardDataAlgorithm() to help the choice of the
algorithm used for the backward data convolution.

Value Meaning

CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm()
is guaranteed to return an algorithm that does not
require any extra workspace to be provided by the
user.

CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm()
will return the fastest algorithm regardless how
much workspace is needed to execute it.

CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMITIn this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm()
will return the fastest algorithm that fits within
the memory limit that the user provided.

3.21. cudnnConvolutionBwdDataAlgo_t
cudnnConvolutionBwdDataAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward data convolution operation.

Value Meaning

CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 This algorithm expresses the convolution as a sum
of matrix product without actually explicitly form
the matrix that holds the input tensor data. The
sum is done using atomic adds operation, thus the
results are non-deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 This algorithm expresses the convolution as a
matrix product without actually explicitly form

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 16

Value Meaning

the matrix that holds the input tensor data. The
results are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT This algorithm uses a Fast-Fourier Transform
approach to compute the convolution. A
significant memory workspace is needed to
store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILINGThis algorithm uses a Fast-Fourier Transform
approach but splits the inputs into 32x32 tiles. A
significant memory workspace is needed to store
intermediate results but significantly less than
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT for
big size images. A significant memory workspace is
needed to store intermediate results. The results
are deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD This algorithm uses the Winograd Transform
approach to compute the convolution. A
reasonably sized workspace is needed to
store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSEDThis algorithm uses the Winograd Transform
approach to compute the convolution. Significant
workspace may be needed to store intermediate
results. The results are deterministic.

3.22. cudnnConvolutionBwdDataAlgoPerf_t
cudnnConvolutionBwdDataAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionBackwardDataAlgorithm().

Member Name Explanation

cudnnConvolutionBwdDataAlgo_t algo The algorithm run to obtain the associated
performance metrics.

cudnnStatus_t status If any error occurs during the
workspace allocation or timing of
cudnnConvolutionBackwardData_v3(), this
status will represent that error. Otherwise,
this status will be the return status of
cudnnConvolutionBackwardData_v3().

‣ CUDNN_STATUS_ALLOC_FAILED if any error
occured during workspace allocation or if
provided workspace is insufficient.

‣ CUDNN_STATUS_INTERNAL_ERROR if any
error occured during timing calculations or
workspace deallocation.

‣ Otherwise, this will be the return status of
cudnnConvolutionBackwardData_v3().

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 17

Member Name Explanation

float time The execution time of
cudnnConvolutionBackwardData_v3() (in
milliseconds).

size_t memory The workspace size (in bytes).

3.23. cudnnSoftmaxAlgorithm_t
cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax
function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Value Meaning

CUDNN_SOFTMAX_FAST This implementation applies the straightforward
softmax operation.

CUDNN_SOFTMAX_ACCURATE This implementation scales each point of the
softmax input domain by its maximum value to
avoid potential floating point overflows in the
softmax evaluation.

CUDNN_SOFTMAX_LOG This entry performs the Log softmax operation,
avoiding overflows by scaling each point in the
input domain as in CUDNN_SOFTMAX_ACCURATE

3.24. cudnnSoftmaxMode_t
cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward()
and cudnnSoftmaxBackward() are computing their results.

Value Meaning

CUDNN_SOFTMAX_MODE_INSTANCE The softmax operation is computed per image (N)
across the dimensions C,H,W.

CUDNN_SOFTMAX_MODE_CHANNEL The softmax operation is computed per spatial
location (H,W) per image (N) across the dimension
C.

3.25. cudnnPoolingMode_t
cudnnPoolingMode_t is an enumerated type passed to
cudnnSetPoolingDescriptor() to select the pooling method to be used by
cudnnPoolingForward() and cudnnPoolingBackward().

Value Meaning

CUDNN_POOLING_MAX The maximum value inside the pooling window will
be used.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 18

Value Meaning

CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDINGThe values inside the pooling window will be
averaged. The number of padded values will be
taken into account when computing the average
value

CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDINGThe values inside the pooling window will be
averaged. The number of padded values will not
be taken into account when computing the average
value

3.26. cudnnActivationMode_t
cudnnActivationMode_t is an enumerated type used to select the neuron activation
function used in cudnnActivationForward() and cudnnActivationBackward().

Value Meaning

CUDNN_ACTIVATION_SIGMOID Selects the sigmoid function.

CUDNN_ACTIVATION_RELU Selects the rectified linear function.

CUDNN_ACTIVATION_TANH Selects the hyperbolic tangent function.

CUDNN_ACTIVATION_CLIPPED_RELU Selects the clipped rectified linear function

3.27. cudnnLRNMode_t
cudnnLRNMode_t is an enumerated type used to specify the mode of operation in
cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Value Meaning

CUDNN_LRN_CROSS_CHANNEL_DIM1 LRN computation is performed across tensor's
dimension dimA[1].

3.28. cudnnDivNormMode_t
cudnnDivNormMode_t is an enumerated type used to specify the
mode of operation in cudnnDivisiveNormalizationForward() and
cudnnDivisiveNormalizationBackward().

Value Meaning

CUDNN_DIVNORM_PRECOMPUTED_MEANS The means tensor data pointer is expected to
contain means or other kernel convolution values
precomputed by the user. The means pointer
can also be NULL, in that case it's considered
to be filled with zeroes. This is equivalent to
spatial LRN. Note that in the backward pass
the means are treated as independent inputs

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 19

Value Meaning

and the gradient over means is computed
independently. In this mode to yield a net gradient
over the entire LCN computational graph the
destDiffMeans result should be backpropagated
through the user's means layer (which can
be impelemented using average pooling) and
added to the destDiffData tensor produced by
cudnnDivisiveNormalizationBackward.

3.29. cudnnBatchNormMode_t
cudnnBatchNormMode_t is an enumerated type used to specify the mode
of operation in cudnnBatchNormalizationForwardInference(),
cudnnBatchNormalizationForwardTraining(),
cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor()
routines.

Value Meaning

CUDNN_BATCHNORM_PER_ACTIVATION Normalization is performed per-activation.
This mode is intended to be used after non-
convolutional network layers. In this mode bnBias
and bnScale tensor dimensions are 1xCxHxW.

CUDNN_BATCHNORM_SPATIAL Normalization is performed over N+spatial
dimensions. This mode is intended for use after
convolutional layers (where spatial invariance
is desired). In this mode bnBias, bnScale tensor
dimensions are 1xCx1x1.

3.30. cudnnRNNDescriptor_t
cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of
an RNN operation. cudnnCreateRNNDescriptor() is used to create one instance, and
cudnnSetRNNDescriptor() must be used to initialize this instance.

3.31. cudnnRNNMode_t
cudnnRNNMode_t is an enumerated type used to specify the type of network
used in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Value Meaning

CUDNN_RNN_RELU A single-gate recurrent neural network with a ReLU
activation function.

In the forward pass the output ht for a given
iteration can be computed from the recurrent
input ht-1 and the previous layer input xt given

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 20

Value Meaning

matrices W, R and biases bW, bR from the
following equation:

ht = ReLU(Wixt + Riht-1 + bWi + bRi)

Where ReLU(x) = max(x, 0).

CUDNN_RNN_TANH A single-gate recurrent neural network with a tanh
activation function.

In the forward pass the output ht for a given
iteration can be computed from the recurrent
input ht-1 and the previous layer input xt given
matrices W, R and biases bW, bR from the
following equation:

ht = tanh(Wixt + Riht-1 + bWi + bRi)

Where tanh is the hyperbolic tangent function.

CUDNN_LSTM A four-gate Long Short-Term Memory network with
no peephole connections.

In the forward pass the output ht and cell output
ct for a given iteration can be computed from the
recurrent input ht-1, the cell input ct-1 and the
previous layer input xt given matrices W, R and
biases bW, bR from the following equations:

it = σ(Wixt + Riht-1 + bWi + bRi)
ft = σ(Wfxt + Rfht-1 + bWf + bRf)
ot = σ(Woxt + Roht-1 + bWo + bRo)
c't = tanh(Wcxt + Rcht-1 + bWc + bRc)
ct = ft◦ct-1 + it◦c't
ht = ot◦tanh(ct)

Where σ is the sigmoid operator: σ(x) = 1 / (1
+ e-x), ◦ represents a point-wise multiplication
and tanh is the hyperbolic tangent function. it,
ft, ot, c't represent the input, forget, output
and new gates respectively.

CUDNN_GRU A three-gate network consisting of Gated
Recurrent Units.

In the forward pass the output ht for a given
iteration can be computed from the recurrent
input ht-1 and the previous layer input xt given
matrices W, R and biases bW, bR from the
following equations:

it = σ(Wixt + Riht-1 + bWi + bRu)
rt = σ(Wrxt + Rrht-1 + bWr + bRr)
h't = tanh(Whxt + rt◦(Rhht-1 + bRh) +
 bWh)
ht = (1 - it)◦h't + it◦ht-1

Where σ is the sigmoid operator: σ(x) = 1 / (1
+ e-x), ◦ represents a point-wise multiplication
and tanh is the hyperbolic tangent function. it,

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 21

Value Meaning

rt, h't represent the input, reset, new gates
respectively.

3.32. cudnnDirectionMode_t
cudnnDirectionMode_t is an enumerated type used to specify the recurrence
pattern in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Value Meaning

CUDNN_UNIDIRECTIONAL The network iterates recurrently from the first
input to the last.

CUDNN_BIDIRECTIONAL Each layer of the the network iterates recurrently
from the first input to the last and separately
from the last input to the first. The outputs of the
two are concatenated at each iteration giving the
output of the layer.

3.33. cudnnRNNInputMode_t
cudnnRNNInputMode_t is an enumerated type used to specify the behavior of the
first layer in the cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData() and cudnnRNNBackwardWeights() routines.

Value Meaning

CUDNN_LINEAR_INPUT A biased matrix multiplication is performed at the
input of the first recurrent layer.

CUDNN_SKIP_INPUT No operation is performed at the input of the first
recurrent layer. If CUDNN_SKIP_INPUT is used
the leading dimension of the input tensor must be
equal to the hidden state size of the network.

3.34. cudnnDropoutDescriptor_t
cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the
description of a dropout operation. cudnnCreateDropoutDescriptor() is used
to create one instance, cudnnSetDropoutDescriptor() is be used to initialize this
instance, cudnnDestroyDropoutDescriptor() is be used to destroy this instance.

3.35. cudnnSpatialTransformerDescriptor_t
cudnnSpatialTransformerDescriptor_t is a pointer to an opaque
structure holding the description of a spatial transformation operation.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 22

cudnnCreateSpatialTransformerDescriptor() is used to create one instance,
cudnnSetSpatialTransformerNdDescriptor() is used to initialize this instance,
cudnnDestroySpatialTransformerDescriptor() is used to destroy this instance.

3.36. cudnnSamplerType_t
cudnnSamplerType_t is an enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor() to select the sampler type to be used
by cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward().

Value Meaning

CUDNN_SAMPLER_BILINEAR selects the bilinear sampler

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 23

Chapter 4.
CUDNN API REFERENCE

This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnGetVersion
size_t cudnnGetVersion()

This function returns the version number of the cuDNN Library. It returns the
CUDNN_VERSION define present in the cudnn.h header file. Starting with release R2, the
routine can be used to identify dynamically the current cuDNN Library used by the
application. The define CUDNN_VERSION can be used to have the same application linked
against different cuDNN versions using conditional compilation statements.

4.2. cudnnGetErrorString
const char * cudnnGetErrorString(cudnnStatus_t status)

This function returns a human-readable character string describing the cudnnStatus_t
enumerate passed as input parameter.

4.3. cudnnCreate
cudnnStatus_t cudnnCreate(cudnnHandle_t *handle)

This function initializes the cuDNN library and creates a handle to an opaque
structure holding the cuDNN library context. It allocates hardware resources on
the host and device and must be called prior to making any other cuDNN library
calls. The cuDNN library context is tied to the current CUDA device. To use the
library on multiple devices, one cuDNN handle needs to be created for each device.
For a given device, multiple cuDNN handles with different configurations (e.g.,
different current CUDA streams) may be created. Because cudnnCreate allocates
some internal resources, the release of those resources by calling cudnnDestroy will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice
is to call cudnnCreate/cudnnDestroy outside of performance-critical code paths.
For multithreaded applications that use the same device from different threads, the

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 24

recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.

Return Value Meaning

CUDNN_STATUS_SUCCESS The initialization succeeded.

CUDNN_STATUS_NOT_INITIALIZED CUDA Runtime API initialization failed.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.4. cudnnDestroy
cudnnStatus_t cudnnDestroy(cudnnHandle_t handle)

This function releases hardware resources used by the cuDNN library. This function
is usually the last call with a particular handle to the cuDNN library. Because
cudnnCreate allocates some internal resources, the release of those resources by
calling cudnnDestroy will implicitly call cudaDeviceSynchronize; therefore,
the recommended best practice is to call cudnnCreate/cudnnDestroy outside of
performance-critical code paths.

Return Value Meaning

CUDNN_STATUS_SUCCESS The cuDNN context destruction was successful.

CUDNN_STATUS_NOT_INITIALIZED The library was not initialized.

4.5. cudnnSetStream
cudnnStatus_t cudnnSetStream(cudnnHandle_t handle, cudaStream_t streamId)

This function sets the cuDNN library stream, which will be used to execute all
subsequent calls to the cuDNN library functions with that particular handle. If the
cuDNN library stream is not set, all kernels use the default (NULL) stream. In particular,
this routine can be used to change the stream between kernel launches and then to reset
the cuDNN library stream back to NULL.

Return Value Meaning

CUDNN_STATUS_SUCCESS The stream was set successfully.

4.6. cudnnGetStream
cudnnStatus_t cudnnGetStream(cudnnHandle_t handle, cudaStream_t *streamId)

This function gets the cuDNN library stream, which is being used to execute all calls to
the cuDNN library functions. If the cuDNN library stream is not set, all kernels use the
default NULL stream.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 25

Return Value Meaning

CUDNN_STATUS_SUCCESS The stream was returned successfully.

4.7. cudnnCreateTensorDescriptor
cudnnStatus_t cudnnCreateTensorDescriptor(cudnnTensorDescriptor_t *tensorDesc)

This function creates a generic Tensor descriptor object by allocating the memory needed
to hold its opaque structure. The data is initialized to be all zero.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.8. cudnnSetTensor4dDescriptor
cudnnStatus_t
cudnnSetTensor4dDescriptor(cudnnTensorDescriptor_t tensorDesc,
 cudnnTensorFormat_t format,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w)

This function initializes a previously created generic Tensor descriptor object into a
4D tensor. The strides of the four dimensions are inferred from the format parameter
and set in such a way that the data is contiguous in memory with no padding between
dimensions.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Param In/out Meaning

tensorDesc input/
output

Handle to a previously created tensor descriptor.

format input Type of format.

datatype input Data type.

n input Number of images.

c input Number of feature maps per image.

h input Height of each feature map.

w input Width of each feature map.

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 26

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters n,c,h,w was
negative or format has an invalid enumerant value
or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED The total size of the tensor descriptor exceeds the
maximim limit of 2 Giga-elements.

4.9. cudnnSetTensor4dDescriptorEx
cudnnStatus_t
cudnnSetTensor4dDescriptorEx(cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w,
 int nStride,
 int cStride,
 int hStride,
 int wStride);

This function initializes a previously created generic Tensor descriptor object into a
4D tensor, similarly to cudnnSetTensor4dDescriptor but with the strides explicitly
passed as parameters. This can be used to lay out the 4D tensor in any order or simply to
define gaps between dimensions.

At present, some cuDNN routines have limited support for strides; Those routines will
return CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported
stride is used. cudnnTransformTensor can be used to convert the data to a
supported layout.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Param In/out Meaning

tensorDesc input/
output

Handle to a previously created tensor descriptor.

datatype input Data type.

n input Number of images.

c input Number of feature maps per image.

h input Height of each feature map.

w input Width of each feature map.

nStride input Stride between two consecutive images.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 27

Param In/out Meaning

cStride input Stride between two consecutive feature maps.

hStride input Stride between two consecutive rows.

wStride input Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters n,c,h,w or
nStride,cStride,hStride,wStride is negative
or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED The total size of the tensor descriptor exceeds the
maximim limit of 2 Giga-elements.

4.10. cudnnGetTensor4dDescriptor
cudnnStatus_t
cudnnGetTensor4dDescriptor(cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t *dataType,
 int *n,
 int *c,
 int *h,
 int *w,
 int *nStride,
 int *cStride,
 int *hStride,
 int *wStride)

This function queries the parameters of the previouly initialized Tensor4D descriptor
object.

Param In/out Meaning

tensorDesc input Handle to a previously insitialized tensor descriptor.

datatype output Data type.

n output Number of images.

c output Number of feature maps per image.

h output Height of each feature map.

w output Width of each feature map.

nStride output Stride between two consecutive images.

cStride output Stride between two consecutive feature maps.

hStride output Stride between two consecutive rows.

wStride output Stride between two consecutive columns.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 28

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation succeeded.

4.11. cudnnSetTensorNdDescriptor
cudnnStatus_t
cudnnSetTensorNdDescriptor(cudnnTensorDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int nbDims,
 int dimA[],
 int strideA[])

This function initializes a previously created generic Tensor descriptor object.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Param In/out Meaning

tensorDesc input/
output

Handle to a previously created tensor descriptor.

datatype input Data type.

nbDims input Dimension of the tensor.

dimA input Array of dimension nbDims that contain the size of the tensor for every
dimension.

strideA input Array of dimension nbDims that contain the stride of the tensor for every
dimension.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the elements of the array dimA
was negative or zero, or dataType has an invalid
enumerant value.

CUDNN_STATUS_NOT_SUPPORTED the parameter nbDims exceeds CUDNN_DIM_MAX
or the total size of the tensor descriptor exceeds
the maximim limit of 2 Giga-elements.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 29

4.12. cudnnGetTensorNdDescriptor
cudnnStatus_t
cudnnGetTensorNdDescriptor(const cudnnTensorDescriptor_t tensorDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 int *nbDims,
 int dimA[],
 int strideA[])

This function retrieves values stored in a previously initialized Tensor descriptor object.

Param In/out Meaning

tensorDesc input Handle to a previously initialized tensor descriptor.

nbDimsRequestedinput Number of dimensions to extract from a given tensor descriptor. It is
also the minimum size of the arrays dimA and strideA. If this number is
greater than the resulting nbDims[0], only nbDims[0] dimensions will be
returned.

datatype output Data type.

nbDims output Actual number of dimensions of the tensor will be returned in nbDims[0].

dimA output Array of dimension of at least nbDimsRequested that will be filled with
the dimensions from the provided tensor descriptor.

strideA input Array of dimension of at least nbDimsRequested that will be filled with
the strides from the provided tensor descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The results were returned successfully.

CUDNN_STATUS_BAD_PARAM Either tensorDesc or nbDims pointer is NULL.

4.13. cudnnDestroyTensorDescriptor
cudnnStatus_t cudnnDestroyTensorDescriptor(cudnnTensorDescriptor_t tensorDesc)

This function destroys a previously created Tensor descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 30

4.14. cudnnTransformTensor
cudnnStatus_t
cudnnTransformTensor(cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function copies the scaled data from one tensor to another tensor with a different
layout. Those descriptors need to have the same dimensions but not necessarily the
same strides. The input and output tensors must not overlap in any way (i.e., tensors
cannot be transformed in place). This function can be used to convert a tensor with an
unsupported format to a supported one.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the source
value with prior value in the destination tensor as follows: dstValue =
alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc input Handle to a previously initialized tensor descriptor.

x input Pointer to data of the tensor described by the xDesc descriptor.

yDesc input Handle to a previously initialized tensor descriptor.

y output Pointer to data of the tensor described by the yDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM The dimensions n,c,h,w or the dataType of the
two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.15. cudnnAddTensor
cudnnStatus_t
cudnnAddTensor_(cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 31

This function adds the scaled values of a bias tensor to another tensor. Each dimension
of the bias tensor A must match the corresponding dimension of the destination tensor
C or must be equal to 1. In the latter case, the same value from the bias tensor for those
dimensions will be used to blend into the C tensor.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the source
value with prior value in the destination tensor as follows: dstValue =
alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

aDesc input Handle to a previously initialized tensor descriptor.

A input Pointer to data of the tensor described by the aDesc descriptor.

cDesc input Handle to a previously initialized tensor descriptor.

C input/
output

Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED The dimensions of the bias tensor and the output
tensor dimensions are above 5.

CUDNN_STATUS_BAD_PARAM The dimensions of the bias tensor refer to an
amount of data that is incompatible the output
tensor dimensions or the dataType of the two
tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.16. cudnnOpTensor
cudnnStatus_t
cudnnOpTensor(cudnnHandle_t handle,
 const cudnnOpTensorDescriptor_t opTensorDesc,
 const void *alpha1,
 const cudnnTensorDescriptor_t aDesc,
 const void *A,
 const void *alpha2,
 const cudnnTensorDescriptor_t bDesc,
 const void *B,
 const void *beta,
 const cudnnTensorDescriptor_t cDesc,
 void *C)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 32

This function implements the equation C = op (alpha1[0] * A, alpha2[0] * B) + beta[0] *
C, given tensors A, B, and C and scaling factors alpha1, alpha2, and beta. The op to use
is indicated by the descriptor opTensorDesc. Currently-supported ops are listed by the
cudnnOpTensorOp_t enum.

Each dimension of the input tensor A must match the corresponding dimension of
the destination tensor C, and each dimension of the input tensor B must match the
corresponding dimension of the destination tensor C or must be equal to 1. In the latter
case, the same value from the input tensor B for those dimensions will be used to blend
into the C tensor.

The data types of the input tensors A and B must match. If the data type of the
destination tensor C is double, then the data type of the input tensors also must be
double.

If the data type of the destination tensor C is double, then opTensorCompType in
opTensorDesc must be double. Else opTensorCompType must be float.

If the input tensor B is the same tensor as the destination tensor C, then the input tensor
A also must be the same tensor as the destination tensor C.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

opTensorDesc input Handle to a previously initialized op tensor descriptor.

alpha1,
alpha2, beta

input Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as indicated by the above op
equation. Please refer to this section for additional details.

aDesc,
bDesc, cDesc

input Handle to a previously initialized tensor descriptor.

A, B input Pointer to data of the tensors described by the aDesc and bDesc
descriptors, respectively.

C input/
output

Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED The dimensions of the bias tensor and the
output tensor dimensions are above 5, or
opTensorCompType is not set as stated above.

CUDNN_STATUS_BAD_PARAM The data type of the destination tensor C is
unrecognized or the conditions in the above
paragraphs are unmet.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 33

Return Value Meaning

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.17. cudnnSetTensor
cudnnStatus_t cudnnSetTensor(
 cudnnHandle_t handle,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const void *valuePtr);

This function sets all the elements of a tensor to a given value.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

yDesc input Handle to a previously initialized tensor descriptor.

y input/output Pointer to data of the tensor described by the yDesc descriptor.

valuePtrinput Pointer in Host memory to a single value. All elements of the y tensor will
be set to value[0]. The data type of the element in value[0] has to match
the data type of tensor y.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM one of the provided pointers is nil

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.18. cudnnScaleTensor
cudnnStatus_t cudnnScaleTensor(cudnnHandle_t handle,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const void *alpha);

This function scale all the elements of a tensor by a given factor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

yDesc input Handle to a previously initialized tensor descriptor.

y input/
output

Pointer to data of the tensor described by the yDesc descriptor.

alpha input Pointer in Host memory to a single value that all elements of the tensor
will be scaled with. Please refer to this section for additional details.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 34

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM one of the provided pointers is nil

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.19. cudnnCreateFilterDescriptor
cudnnStatus_t cudnnCreateFilterDescriptor(cudnnFilterDescriptor_t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold
its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.20. cudnnSetFilter4dDescriptor
cudnnStatus_t
cudnnSetFilter4dDescriptor(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int k,
 int c,
 int h,
 int w)

This function initializes a previously created filter descriptor object into a 4D filter.
Filters layout must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in
cudnnConvolutionForward, cudnnConvolutionBackwardData and
cudnnConvolutionBackwardFilter; please refer to each function's documentation for
more information.

Param In/out Meaning

filterDesc input/
output

Handle to a previously created filter descriptor.

datatype input Data type.

format input Type of format.

k input Number of output feature maps.

c input Number of input feature maps.

h input Height of each filter.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 35

Param In/out Meaning

w input Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters k,c,h,w is
negative or dataType or format has an invalid
enumerant value.

4.21. cudnnGetFilter4dDescriptor
cudnnStatus_t
cudnnGetFilter4dDescriptor(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *k,
 int *c,
 int *h,
 int *w)

This function queries the parameters of the previouly initialized filter descriptor object.

Param In/out Meaning

filterDesc input Handle to a previously created filter descriptor.

datatype output Data type.

format output Type of format.

k output Number of output feature maps.

c output Number of input feature maps.

h output Height of each filter.

w output Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 36

4.22. cudnnSetFilter4dDescriptor_v3
cudnnStatus_t
cudnnSetFilter4dDescriptor_v3(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 int k,
 int c,
 int h,
 int w)

This function initializes a previously created filter descriptor object into a 4D filter.
Filters layout must be contiguous in memory. When using this routine to set up a filter
descriptor, the filter format is set to CUDNN_TENSOR_NCHW.

This routine is deprecated, cudnnSetFilter4dDescriptor should be used instead.

Param In/out Meaning

filterDesc input/
output

Handle to a previously created filter descriptor.

datatype input Data type.

k input Number of output feature maps.

c input Number of input feature maps.

h input Height of each filter.

w input Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters k,c,h,w is
negative or dataType has an invalid enumerant
value.

4.23. cudnnGetFilter4dDescriptor_v3
cudnnStatus_t
cudnnGetFilter4dDescriptor_v3(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 int *k,
 int *c,
 int *h,
 int *w)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 37

This function queries the parameters of the previouly initialized filter descriptor object.

This routine is deprecated, cudnnGetFilter4dDescriptor should be used instead.

Param In/out Meaning

filterDesc input Handle to a previously created filter descriptor.

datatype output Data type.

k output Number of output feature maps.

c output Number of input feature maps.

h output Height of each filter.

w output Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

4.24. cudnnSetFilter4dDescriptor_v4
cudnnStatus_t
cudnnSetFilter4dDescriptor_v4(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int k,
 int c,
 int h,
 int w)

This function is equivalent to cudnnSetFilter4dDescriptor.

4.25. cudnnGetFilter4dDescriptor_v4
cudnnStatus_t
cudnnGetFilter4dDescriptor_v4(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *k,
 int *c,
 int *h,
 int *w)

This function is equivalent to cudnnGetFilter4dDescriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 38

4.26. cudnnSetFilterNdDescriptor
cudnnStatus_t
cudnnSetFilterNdDescriptor(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int nbDims,
 int filterDimA[])

This function initializes a previously created filter descriptor object. Filters layout must
be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in
cudnnConvolutionForward, cudnnConvolutionBackwardData and
cudnnConvolutionBackwardFilter; please refer to each function's documentation for
more information.

Param In/out Meaning

filterDesc input/
output

Handle to a previously created filter descriptor.

datatype input Data type.

format input Type of format.

nbDims input Dimension of the filter.

filterDimA input Array of dimension nbDims containing the size of the filter for each
dimension.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the elements of the array
filterDimA is negative or dataType or format
has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED the parameter nbDims exceeds CUDNN_DIM_MAX.

4.27. cudnnGetFilterNdDescriptor
cudnnStatus_t
cudnnGetFilterNdDescriptor(const cudnnFilterDescriptor_t wDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *nbDims,
 int filterDimA[])

This function queries a previously initialized filter descriptor object.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 39

Param In/out Meaning

wDesc input Handle to a previously initialized filter descriptor.

nbDimsRequestedinput Dimension of the expected filter descriptor. It is also the minimum size of
the arrays filterDimA in order to be able to hold the results

datatype input Data type.

format output Type of format.

nbDims input Actual dimension of the filter.

filterDimA input Array of dimension of at least nbDimsRequested that will be filled with
the filter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM The parameter nbDimsRequested is negative.

4.28. cudnnSetFilterNdDescriptor_v3
cudnnStatus_t
cudnnSetFilterNdDescriptor_v3(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 int nbDims,
 int filterDimA[])

This function initializes a previously created filter descriptor object. Filters layout must
be contiguous in memory. When using this routine to set up a filter descriptor, the filter
format is set to CUDNN_TENSOR_NCHW.

This routine is deprecated, cudnnSetFilterNdDescriptor should be used instead.

Param In/out Meaning

filterDesc input/
output

Handle to a previously created filter descriptor.

datatype input Data type.

nbDims input Dimension of the filter.

filterDimA input Array of dimension nbDims containing the size of the filter for each
dimension.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 40

Return Value Meaning

CUDNN_STATUS_BAD_PARAM At least one of the elements of the array
filterDimA is negative or dataType has an
invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED the parameter nbDims exceeds CUDNN_DIM_MAX.

4.29. cudnnGetFilterNdDescriptor_v3
cudnnStatus_t
cudnnGetFilterNdDescriptor_v3(const cudnnFilterDescriptor_t wDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 int *nbDims,
 int filterDimA[])

This function queries a previously initialized filter descriptor object.

This routine is deprecated, cudnnGetFilterNdDescriptor should be used instead.

Param In/out Meaning

wDesc input Handle to a previously initialized filter descriptor.

nbDimsRequestedinput Dimension of the expected filter descriptor. It is also the minimum size of
the arrays filterDimA in order to be able to hold the results

datatype input Data type.

nbDims input Actual dimension of the filter.

filterDimA input Array of dimension of at least nbDimsRequested that will be filled with
the filter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM The parameter nbDimsRequested is negative.

4.30. cudnnSetFilterNdDescriptor_v4
cudnnStatus_t
cudnnSetFilterNdDescriptor_v4(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 cudnnTensorFormat_t format,
 int nbDims,
 int filterDimA[])

This function is equivalent to cudnnSetFilterNdDescriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 41

4.31. cudnnGetFilterNdDescriptor_v4
cudnnStatus_t
cudnnGetFilterNdDescriptor_v4(const cudnnFilterDescriptor_t wDesc,
 int nbDimsRequested,
 cudnnDataType_t *dataType,
 cudnnTensorFormat_t *format,
 int *nbDims,
 int filterDimA[])

This function is equivalent to cudnnGetFilterNdDescriptor.

4.32. cudnnDestroyFilterDescriptor
cudnnStatus_t cudnnDestroyFilterDescriptor(cudnnFilterdDescriptor_t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.33. cudnnCreateConvolutionDescriptor
cudnnStatus_t cudnnCreateConvolutionDescriptor(cudnnConvolutionDescriptor_t
 *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.34. cudnnSetConvolution2dDescriptor
cudnnStatus_t
cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t convDesc,
 int pad_h,
 int pad_w,
 int u,
 int v,
 int upscalex,
 int upscaley,
 cudnnConvolutionMode_t mode)

This function initializes a previously created convolution descriptor object into a 2D
correlation. This function assumes that the tensor and filter descriptors corresponds
to the formard convolution path and checks if their settings are valid. That same
convolution descriptor can be reused in the backward path provided it corresponds to
the same layer.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 42

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

pad_h input zero-padding height: number of rows of zeros implicitly concatenated
onto the top and onto the bottom of input images.

pad_w input zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

u input Vertical filter stride.

v input Horizontal filter stride.

upscalex input Upscale the input in x-direction.

upscaley input Upscale the input in y-direction.

mode input Selects between CUDNN_CONVOLUTION and
CUDNN_CROSS_CORRELATION.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ One of the parameters pad_h,pad_v is

strictly negative.
‣ One of the parameters u,v is negative.
‣ The parameter mode has an invalid enumerant

value.

CUDNN_STATUS_NOT_SUPPORTED The parameter upscalex or upscaley is not 1.

4.35. cudnnGetConvolution2dDescriptor
cudnnStatus_t
cudnnGetConvolution2dDescriptor(const cudnnConvolutionDescriptor_t convDesc,
 int* pad_h,
 int* pad_w,
 int* u,
 int* v,
 int* upscalex,
 int* upscaley,
 cudnnConvolutionMode_t *mode)

This function queries a previously initialized 2D convolution descriptor object.

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 43

Param In/out Meaning

pad_h output zero-padding height: number of rows of zeros implicitly concatenated
onto the top and onto the bottom of input images.

pad_w output zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

u output Vertical filter stride.

v output Horizontal filter stride.

upscalex output Upscale the input in x-direction.

upscaley output Upscale the input in y-direction.

mode output convolution mode.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was successful.

CUDNN_STATUS_BAD_PARAM The parameter convDesc is nil.

4.36. cudnnGetConvolution2dForwardOutputDim
cudnnStatus_t
cudnnGetConvolution2dForwardOutputDim(const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 inputTensorDesc,
 const cudnnFilterDescriptor_t filterDesc,
 int *n,
 int *c,
 int *h,
 int *w)

This function returns the dimensions of the resulting 4D tensor of a 2D convolution,
given the convolution descriptor, the input tensor descriptor and the filter descriptor
This function can help to setup the output tensor and allocate the proper amount of
memory prior to launch the actual convolution.

Each dimension h and w of the output images is computed as followed:

 outputDim = 1 + (inputDim + 2*pad - filterDim)/convolutionStride;

Param In/out Meaning

convDesc input Handle to a previously created convolution descriptor.

inputTensorDescinput Handle to a previously initialized tensor descriptor.

filterDesc input Handle to a previously initialized filter descriptor.

n output Number of output images.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 44

Param In/out Meaning

c output Number of output feature maps per image.

h output Height of each output feature map.

w output Width of each output feature map.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_BAD_PARAM One or more of the descriptors has not been
created correctly or there is a mismatch between
the feature maps of inputTensorDesc and
filterDesc.

CUDNN_STATUS_SUCCESS The object was set successfully.

4.37. cudnnSetConvolutionNdDescriptor
cudnnStatus_t
cudnnSetConvolutionNdDescriptor(cudnnConvolutionDescriptor_t convDesc,
 int arrayLength,
 int padA[],
 int filterStrideA[],
 int upscaleA[],
 cudnnConvolutionMode_t mode,
 cudnnDataType_t dataType)

This function initializes a previously created generic convolution descriptor object into
a n-D correlation. That same convolution descriptor can be reused in the backward path
provided it corresponds to the same layer. The convolution computation will done in the
specified dataType, which can be potentially different from the input/output tensors.

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

arrayLength input Dimension of the convolution.

padA input Array of dimension arrayLength containing the zero-padding size
for each dimension. For every dimension, the padding represents the
number of extra zeros implicitly concatenated at the start and at the
end of every element of that dimension .

filterStrideA input Array of dimension arrayLength containing the filter stride for each
dimension. For every dimension, the fitler stride represents the number
of elements to slide to reach the next start of the filtering window of
the next point.

upscaleA input Array of dimension arrayLength containing the upscale factor for each
dimension.

mode input Selects between CUDNN_CONVOLUTION and
CUDNN_CROSS_CORRELATION.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 45

Param In/out Meaning

datatype input Selects the datatype in which the computation will be done.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ The arrayLenghtRequest is negative.
‣ The enumerant mode has an invalid value.
‣ The enumerant datatype has an invalid

value.
‣ One of the elements of padA is strictly

negative.
‣ One of the elements of strideA is negative

or zero.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The arrayLenghtRequest is greater than
CUDNN_DIM_MAX.

‣ The array upscaleA contains an element
different from 1.

4.38. cudnnGetConvolutionNdDescriptor
cudnnStatus_t
cudnnGetConvolutionNdDescriptor(const cudnnConvolutionDescriptor_t convDesc,
 int arrayLengthRequested,
 int *arrayLength,
 int padA[],
 int filterStrideA[],
 int upscaleA[],
 cudnnConvolutionMode_t *mode,
 cudnnDataType_t *dataType)

This function queries a previously initialized convolution descriptor object.

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

arrayLengthRequestedinput Dimension of the expected convolution descriptor. It is also the
minimum size of the arrays padA, filterStrideA and upscaleA in
order to be able to hold the results

arrayLength output actual dimension of the convolution descriptor.

padA output Array of dimension of at least arrayLengthRequested that will be
filled with the padding parameters from the provided convolution
descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 46

Param In/out Meaning

filterStrideA output Array of dimension of at least arrayLengthRequested that will be
filled with the filter stride from the provided convolution descriptor.

upscaleA output Array of dimension at least arrayLengthRequested that will be filled
with the upscaling parameters from the provided convolution descriptor.

mode output convolution mode of the provided descriptor.

datatype output datatype of the provided descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor convDesc is nil.
‣ The arrayLenghtRequest is negative.

CUDNN_STATUS_NOT_SUPPORTED The arrayLenghtRequest is greater than
CUDNN_DIM_MAX

4.39. cudnnGetConvolutionNdForwardOutputDim
cudnnStatus_t
cudnnGetConvolutionNdForwardOutputDim(const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 inputTensorDesc,
 const cudnnFilterDescriptor_t filterDesc,
 int nbDims,
 int tensorOuputDimA[])

This function returns the dimensions of the resulting n-D tensor of a nbDims-2-D
convolution, given the convolution descriptor, the input tensor descriptor and the filter
descriptor This function can help to setup the output tensor and allocate the proper
amount of memory prior to launch the actual convolution.

Each dimension of the (nbDims-2)-D images of the output tensor is computed as
followed:

 outputDim = 1 + (inputDim + 2*pad - filterDim)/convolutionStride;

Param In/out Meaning

convDesc input Handle to a previously created convolution descriptor.

inputTensorDesc,input Handle to a previously initialized tensor descriptor.

filterDesc input Handle to a previously initialized filter descriptor.

nbDims input Dimension of the output tensor

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 47

Param In/out Meaning

tensorOuputDimAoutput Array of dimensions nbDims that contains on exit of this routine the sizes
of the output tensor

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters convDesc,
inputTensorDesc, and filterDesc, is nil

‣ The dimension of the filter descriptor
filterDesc is different from the dimension
of input tensor descriptor inputTensorDesc.

‣ The dimension of the convolution descriptor is
different from the dimension of input tensor
descriptor inputTensorDesc -2 .

‣ The features map of the filter descriptor
filterDesc is different from the one of
input tensor descriptor inputTensorDesc.

‣ The size of the filter filterDesc is larger
than the padded sizes of the input tensor.

‣ The dimension nbDims of the output array
is negative or greater than the dimension of
input tensor descriptor inputTensorDesc.

CUDNN_STATUS_SUCCESS The routine exits successfully.

4.40. cudnnDestroyConvolutionDescriptor
cudnnStatus_t cudnnDestroyConvolutionDescriptor(cudnnConvolutionDescriptor_t
 convDesc)

This function destroys a previously created convolution descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 48

4.41. cudnnFindConvolutionForwardAlgorithm
cudnnStatus_t
cudnnFindConvolutionForwardAlgorithm(cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t yDesc,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t
 *perfResults
)

This function attempts all cuDNN algorithms for cudnnConvolutionForward(),
using memory allocated via cudaMalloc(), and outputs performance metrics to a user-
allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics are written in
sorted fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor
descriptor.

wDesc input Handle to a previously initialized filter descriptor.

convDesc input Previously initialized convolution descriptor.

yDesc input Handle to the previously initialized output tensor
descriptor.

requestedAlgoCount input The maximum number of elements to be stored in
perfResults.

returnedAlgoCount output The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics
sorted ascending by compute time.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 49

Return Value Meaning

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, wDesc or yDesc is not allocated

properly.
‣ xDesc, wDesc or yDesc has fewer than 1

dimension.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED This function was unable to allocate memory to
store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

4.42. cudnnFindConvolutionForwardAlgorithmEx
cudnnStatus_t
cudnnFindConvolutionForwardAlgorithmEx(cudnnHandle_t
 handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const void *x,
 const cudnnFilterDescriptor_t
 wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 yDesc,
 void *y,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,
 cudnnConvolutionFwdAlgoPerf_t
 *perfResults,
 void
 *workSpace,
 size_t
 workSpaceSizeInBytes
)

This function attempts all available cuDNN algorithms for
cudnnConvolutionForward, using user-allocated GPU memory, and outputs
performance metrics to a user-allocated array of cudnnConvolutionFwdAlgoPerf_t.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 50

These metrics are written in sorted fashion where the first element has the lowest
compute time.

This function is host blocking.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor
descriptor.

x input Data pointer to GPU memory associated with the
tensor descriptor xDesc.

wDesc input Handle to a previously initialized filter descriptor.

w input Data pointer to GPU memory associated with the filter
descriptor wDesc.

convDesc input Previously initialized convolution descriptor.

yDesc input Handle to the previously initialized output tensor
descriptor.

y input/
output

Data pointer to GPU memory associated with the
tensor descriptor yDesc. The content of this tensor
will be overwritten with arbitary values.

requestedAlgoCount input The maximum number of elements to be stored in
perfResults.

returnedAlgoCount output The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics
sorted ascending by compute time.

workSpace input Data pointer to GPU memory that is a necessary
workspace for some algorithms. The size of this
workspace will determine the availability of
algorithms. A nil pointer is considered a workSpace of
0 bytes.

workSpaceSizeInBytes input Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, wDesc or yDesc is not allocated

properly.
‣ xDesc, wDesc or yDesc has fewer than 1

dimension.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 51

Return Value Meaning

‣ x, w or y is nil.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

4.43. cudnnGetConvolutionForwardAlgorithm
cudnnStatus_t
cudnnGetConvolutionForwardAlgorithm(cudnnHandle_t handle,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t yDesc,
 cudnnConvolutionFwdPreference_t
 preference,
 size_t
 memoryLimitInbytes,
 cudnnConvolutionFwdAlgo_t *algo
)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward for the given layer specifications. Based on the input
preference, this function will either return the fastest algorithm or the fastest algorithm
within a given memory limit. For an exhaustive search for the fastest algorithm, please
use cudnnFindConvolutionForwardAlgorithm.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor descriptor.

wDesc input Handle to a previously initialized convolution filter descriptor.

convDesc input Previously initialized convolution descriptor.

yDesc input Handle to the previously initialized output tensor descriptor.

preference input Enumerant to express the preference criteria in terms of memory
requirement and speed.

memoryLimitInBytesinput It is used when enumerant preference is set to
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT to specify the
maximum amount of GPU memory the user is willing to use as a workspace

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 52

Param In/out Meaning

algo output Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters handle, xDesc, wDesc,
convDesc, yDesc is NULL.

‣ Either yDesc or wDesc have different
dimensions from xDesc.

‣ The data types of tensors xDesc, yDesc or
wDesc are not all the same.

‣ The number of feature maps in xDesc and
wDesc differs.

‣ The tensor xDesc has a dimension smaller
than 3.

4.44. cudnnGetConvolutionForwardWorkspaceSize
cudnnStatus_t
cudnnGetConvolutionForwardWorkspaceSize(cudnnHandle_t handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const cudnnFilterDescriptor_t
 wDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensor4dDescriptor_t
 yDesc,
 cudnnConvolutionFwdAlgo_t
 algo,
 size_t
 *sizeInBytes
)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionForward with the specified
algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionForward. The specified algorithm can be the result of the call to
cudnnGetConvolutionForwardAlgorithm or can be chosen arbitrarily by the user.
Note that not every algorithm is available for every configuration of the input tensor
and/or every configuration of the convolution descriptor.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized x tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 53

Param
In/
out Meaning

wDesc input Handle to a previously initialized filter descriptor.

convDesc input Previously initialized convolution descriptor.

yDesc input Handle to the previously initialized y tensor descriptor.

algo input Enumerant that specifies the chosen convolution algorithm

sizeInBytes output Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters handle, xDesc, wDesc,
convDesc, yDesc is NULL.

‣ The tensor yDesc or wDesc are not of the
same dimension as xDesc.

‣ The tensor xDesc, yDesc or wDesc are not of
the same data type.

‣ The numbers of feature maps of the tensor
xDesc and wDesc differ.

‣ The tensor xDesc has a dimension smaller
than 3.

CUDNN_STATUS_NOT_SUPPORTED The combination of the tensor descriptors, filter
descriptor and convolution descriptor is not
supported for the specified algorithm.

4.45. cudnnConvolutionForward
cudnnStatus_t
cudnnConvolutionForward(cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionFwdAlgo_t algo,
 void *workSpace,
 size_t
 workSpaceSizeInBytes,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y)

This function executes convolutions or cross-correlations over x using filters specified
with w, returning results in y. Scaling factors alpha and beta can be used to scale the
input tensor and the output tensor respectively.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 54

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue =
alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc input Handle to a previously initialized tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

wDesc input Handle to a previously initialized filter descriptor.

w input Data pointer to GPU memory associated with the filter descriptor wDesc.

convDesc input Previously initialized convolution descriptor.

algo input Enumerant that specifies which convolution algorithm shoud be used to
compute the results

workSpace input Data pointer to GPU memory to a workspace needed to able to execute
the specified algorithm. If no workspace is needed for a particular
algorithm, that pointer can be nil

workSpaceSizeInBytesinput Specifies the size in bytes of the provided workSpace

yDesc input Handle to a previously initialized tensor descriptor.

y input/
output

Data pointer to GPU memory associated with the tensor descriptor yDesc
that carries the result of the convolution.

This function supports only four specific combinations of data types for xDesc, wDesc,
convDesc and yDesc. See the following for an exhaustive list of these configurations.

Data Type Configurations
xDesc's, wDesc's and yDesc's
Data Type convDesc's Data Type

TRUE_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_HALF

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

TRUE_HALF_CONFIG is only supported on architectures with true fp16 support
(compute capability 5.3 and 6.0).

For this function, all algorithms perform deterministic computations. Specifying a
separate algorithm can cause changes in performance and support. See the following for
an exhaustive list of algorithm options and their respective supported parameters.

wDesc may only have format CUDNN_TENSOR_NHWC when all of the following are
true:

‣ algo is CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM
‣ xDesc and yDesc is NHWC HWC-packed

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 55

‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional

The following is an exhaustive list of algo support for 2-d convolutions.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMPUTED_GEMM

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: All

‣ CUDNN_CONVOLUTION_FWD_ALGO_GEMM

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_FWD_ALGO_DIRECT

‣ This algorithm has no current implementation in cuDNN.
‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT

‣ xDesc Format Support: NCHW HW-packed
‣ yDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

‣ xDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ xDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

‣ xDesc Format Support: NCHW HW-packed
‣ yDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

‣ wDesc's filter height must equal 32 or less
‣ wDesc's filter width must equal 32 or less
‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 56

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be 3
‣ wDesc's filter width must be 3

‣ CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported

The following is an exhaustive list of algo support for 3-d convolutions.

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ xDesc Format Support: All
‣ yDesc Format Support: All
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMPUTED_GEMM

‣ xDesc Format Support: NCDHW-fully-packed
‣ yDesc Format Support: NCDHW-fully-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING

‣ xDesc Format Support: NCDHW DHW-packed
‣ yDesc Format Support: NCDHW DHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Notes:

‣ wDesc's filter height must equal 16 or less
‣ wDesc's filter width must equal 16 or less
‣ wDesc's filter depth must equal 16 or less
‣ convDesc's must have all filter strides equal to 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width
‣ wDesc's filter depth must be greater than convDesc's zero-padding width

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 57

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ At least one of the following is NULL: handle, xDesc,
wDesc, convDesc, yDesc, xData, w, yData, alpha,
beta

‣ xDesc and yDesc have a non-matching number of
dimensions

‣ xDesc and wDesc have a non-matching number of
dimensions

‣ xDesc has fewer than three number of dimensions
‣ xDesc's number of dimensions is not equal to

convDesc's array length + 2
‣ xDesc and wDesc have a non-matching number of input

feature maps per image
‣ xDesc, wDesc and yDesc have a non-matching data

type
‣ For some spatial dimension, wDesc has a spatial size

that is larger than the input spatial size (including zero-
padding size)

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ xDesc or yDesc have negative tensor striding
‣ xDesc, wDesc or yDesc has a number of dimensions that

is not 4 or 5
‣ The chosen algo does not support the parameters

provided; see above for exhaustive list of parameter
support for each algo

CUDNN_STATUS_MAPPING_ERROR An error occured during the texture binding of the filter data.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.46. cudnnConvolutionBackwardBias
cudnnStatus_t
cudnnConvolutionBackwardBias(cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *beta,
 const cudnnTensorDescriptor_t dbDesc,
 void *db
)

This function computes the convolution function gradient with respect to the bias, which
is the sum of every element belonging to the same feature map across all of the images of
the input tensor. Therefore, the number of elements produced is equal to the number of
features maps of the input tensor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 58

Param In/out Meaning

alpha, beta input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue =
alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for
additional details.

dyDesc input Handle to the previously initialized input tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor
dyDesc.

dbDesc input Handle to the previously initialized output tensor descriptor.

db output Data pointer to GPU memory associated with the output tensor descriptor
dbDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters n,height,width of
the output tensor is not 1.

‣ The numbers of feature maps of the input
tensor and output tensor differ.

‣ The dataType of the two tensor descriptors
are different.

4.47. cudnnFindConvolutionBackwardFilterAlgorithm
cudnnStatus_t
cudnnFindConvolutionBackwardFilterAlgorithm(cudnnHandle_t
 handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnFilterDescriptor_t
 dwDesc,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t
 *perfResults
)

This function attempts all cuDNN algorithms for
cudnnConvolutionBackwardFilter(), using GPU memory allocated via
cudaMalloc(), and outputs performance metrics to a user-allocated array of

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 59

cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in sorted
fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDesc input Previously initialized convolution descriptor.

dwDesc input Handle to a previously initialized filter descriptor.

requestedAlgoCountinput The maximum number of elements to be stored in perfResults.

returnedAlgoCountoutput The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, dyDesc or dwDesc is not allocated

properly.
‣ xDesc, dyDesc or dwDesc has fewer than 1

dimension.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED This function was unable to allocate memory to
store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 60

4.48. cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnStatus_t
cudnnFindConvolutionBackwardFilterAlgorithmEx(cudnnHandle_t
 handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const void
 *x,
 const cudnnTensorDescriptor_t
 dyDesc,
 const void
 *dy,
 const
 cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t
 dwDesc,
 void
 *dw,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,

 cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
 void
 *workSpace,
 size_t
 workSpaceSizeInBytes
)

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardFilter,
using user-allocated GPU memory, and outputs performance metrics to a user-allocated
array of cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are written in
sorted fashion where the first element has the lowest compute time.

This function is host blocking.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the filter descriptor xDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor
dyDesc.

convDesc input Previously initialized convolution descriptor.

dwDesc input Handle to a previously initialized filter descriptor.

dw input/
output

Data pointer to GPU memory associated with the filter descriptor dwDesc.
The content of this tensor will be overwritten with arbitary values.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 61

Param In/out Meaning

requestedAlgoCountinput The maximum number of elements to be stored in perfResults.

returnedAlgoCountoutput The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace input Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of
algorithms. A nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytesinput Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ xDesc, dyDesc or dwDesc is not allocated

properly.
‣ xDesc, dyDesc or dwDesc has fewer than 1

dimension.
‣ x, dy or dw is nil.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 62

4.49. cudnnGetConvolutionBackwardFilterAlgorithm
cudnnStatus_t
cudnnGetConvolutionBackwardFilterAlgorithm(cudnnHandle_t
 handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnFilterDescriptor_t
 dwDesc,

 cudnnConvolutionBwdFilterPreference_t preference,
 size_t
 memoryLimitInbytes,
 cudnnConvolutionBwdFilterAlgo_t
 *algo
)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter for the given layer specifications. Based on
the input preference, this function will either return the fastest algorithm or the
fastest algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardFilterAlgorithm.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDesc input Previously initialized convolution descriptor.

dwDesc input Handle to a previously initialized filter descriptor.

preference input Enumerant to express the preference criteria in terms of memory requirement
and speed.

memoryLimitInbytesinput It is to specify the maximum amount of GPU memory the user is willing to use
as a workspace. This is currently a placeholder and is not used.

algo output Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESSThe query was successful.

CUDNN_STATUS_BAD_PARAMAt least one of the following conditions are met:

‣ The numbers of feature maps of the input tensor and output tensor differ.
‣ The dataType of the two tensor descriptors or the filter are different.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 63

4.50. cudnnGetConvolutionBackwardFilterWorkspaceSize
cudnnStatus_t
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnnHandle_t handle,
 const cudnnTensorDescriptor_t
 xDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const
 cudnnConvolutionDescriptor_t convDesc,
 const cudnnFilterDescriptor_t
 dwDesc,
 cudnnConvolutionFwdAlgo_t
 algo,
 size_t
 *sizeInBytes
)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionBackwardFilter with the
specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardFilter. The specified algorithm can be the result of the
call to cudnnGetConvolutionBackwardFilterAlgorithm or can be chosen arbitrarily
by the user. Note that not every algorithm is available for every configuration of the
input tensor and/or every configuration of the convolution descriptor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

xDesc input Handle to the previously initialized input tensor descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDescinput Previously initialized convolution descriptor.

dwDesc input Handle to a previously initialized filter descriptor.

algo input Enumerant that specifies the chosen convolution algorithm

sizeInBytesoutput Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The numbers of feature maps of the input
tensor and output tensor differ.

‣ The dataType of the two tensor descriptors
or the filter are different.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 64

Return Value Meaning

CUDNN_STATUS_NOT_SUPPORTED The combination of the tensor descriptors, filter
descriptor and convolution descriptor is not
supported for the specified algorithm.

4.51. cudnnConvolutionBackwardFilter
cudnnStatus_t
cudnnConvolutionBackwardFilter (cudnnHandle_t handle,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t
 convDesc,
 cudnnConvolutionBwdFilterAlgo_t algo,
 void
 *workSpace,
 size_t
 workSpaceSizeInBytes,
 const void *beta,
 const cudnnFilterDescriptor_t dwDesc,
 void *dw)

This function computes the convolution gradient with respect to filter coefficients using
the specified algo, returning results in gradDesc.Scaling factors alpha and beta can be
used to scale the input tensor and the output tensor respectively.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue =
alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc input Handle to a previously initialized tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the backpropagation gradient
tensor descriptor dyDesc.

convDesc input Previously initialized convolution descriptor.

algo input Enumerant that specifies which convolution algorithm shoud be used to
compute the results

workSpace input Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm,
that pointer can be nil

workSpaceSizeInBytesinput Specifies the size in bytes of the provided workSpace

dwDesc input Handle to a previously initialized filter gradient descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 65

Param In/out Meaning

dw input/
output

Data pointer to GPU memory associated with the filter gradient descriptor
dwDesc that carries the result.

This function supports only three specific combinations of data types for xDesc,
dyDesc, convDesc and dwDesc. See the following for an exhaustive list of these
configurations.

Data Type Configurations
xDesc's, dyDesc's and
dwDesc's Data Type convDesc's Data Type

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

dwDesc may only have format CUDNN_TENSOR_NHWC when all of the following are
true:

‣ algo is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ xDesc and dyDesc is NHWC HWC-packed
‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional

The following is an exhaustive list of algo support for 2-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ Deterministic: No
‣ xDesc Format Support: All
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ Deterministic: Yes
‣ xDesc Format Support: All
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 66

‣ xDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ xDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ dwDesc's filter height must be greater than convDesc's zero-padding height
‣ dwDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ Deterministic: No
‣ xDesc Format Support: All
‣ dyDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

‣ Deterministic: Yes
‣ xDesc Format Support: All
‣ yDesc Format Support: NCHW CHW-packed
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported

The following is an exhaustive list of algo support for 3-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ Deterministic: No
‣ xDesc Format Support: All
‣ dyDesc Format Support: NCDHW CDHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ Deterministic: No
‣ xDesc Format Support: NCDHW-fully-packed
‣ dyDesc Format Support: NCDHW-fully-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ At least one of the following is NULL: handle,
xDesc, dyDesc, convDesc, dwDesc, xData,
dyData, dwData, alpha, beta

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 67

Return Value Meaning

‣ xDesc and dyDesc have a non-matching
number of dimensions

‣ xDesc and dwDesc have a non-matching
number of dimensions

‣ xDesc has fewer than three number of
dimensions

‣ xDesc, dyDesc and dwDesc have a non-
matching data type.

‣ xDesc and dwDesc have a non-matching
number of input feature maps per image.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ xDesc or dyDesc have negative tensor
striding

‣ xDesc, dyDesc or dwDesc has a number of
dimensions that is not 4 or 5

‣ The chosen algo does not support the
parameters provided; see above for
exhaustive list of parameter support for each
algo

CUDNN_STATUS_MAPPING_ERROR An error occurs during the texture binding of the
filter data.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.52. cudnnFindConvolutionBackwardDataAlgorithm
cudnnStatus_t
cudnnFindConvolutionBackwardDataAlgorithm(cudnnHandle_t
 handle,
 const cudnnFilterDescriptor_t
 wDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 dxDesc,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t
 *perfResults);

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardData(),
using memory allocated via cudaMalloc() and outputs performance metrics to a user-

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 68

allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics are written
in sorted fashion where the first element has the lowest compute time.

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

wDesc input Handle to a previously initialized filter descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDesc input Previously initialized convolution descriptor.

dxDesc input Handle to the previously initialized output tensor descriptor.

requestedAlgoCountinput The maximum number of elements to be stored in perfResults.

returnedAlgoCountoutput The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ wDesc, dyDesc or dxDesc is not allocated

properly.
‣ wDesc, dyDesc or dxDesc has fewer than 1

dimension.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_ALLOC_FAILED This function was unable to allocate memory to
store sample input, filters and output.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 69

4.53. cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnStatus_t
cudnnFindConvolutionBackwardDataAlgorithmEx(cudnnHandle_t
 handle,
 const cudnnFilterDescriptor_t
 wDesc,
 const void
 *w,
 const cudnnTensorDescriptor_t
 dyDesc,
 const void
 *dy,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 dxDesc,
 void
 *dx,
 const int
 requestedAlgoCount,
 int
 *returnedAlgoCount,
 cudnnConvolutionBwdFilterAlgoPerf_t
 *perfResults,
 void
 *workSpace,
 size_t
 workSpaceSizeInBytes);

This function attempts all cuDNN algorithms for cudnnConvolutionBackwardData,
using user-allocated GPU memory, and outputs performance metrics to a user-allocated
array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics are written in sorted
fashion where the first element has the lowest compute time.

This function is host blocking.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

wDesc input Handle to a previously initialized filter descriptor.

w input Data pointer to GPU memory associated with the filter descriptor wDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the filter descriptor dyDesc.

convDesc input Previously initialized convolution descriptor.

dxDesc input Handle to the previously initialized output tensor descriptor.

dxDesc input/
output

Data pointer to GPU memory associated with the tensor descriptor dxDesc.
The content of this tensor will be overwritten with arbitary values.

requestedAlgoCountinput The maximum number of elements to be stored in perfResults.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 70

Param In/out Meaning

returnedAlgoCountoutput The number of output elements stored in perfResults.

perfResults output A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace input Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of
algorithms. A nil pointer is considered a workSpace of 0 bytes.

workSpaceSizeInBytesinput Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is not allocated properly.
‣ wDesc, dyDesc or dxDesc is not allocated

properly.
‣ wDesc, dyDesc or dxDesc has fewer than 1

dimension.
‣ w, dy or dx is nil.
‣ Either returnedCount or perfResults is

nil.
‣ requestedCount is less than 1.

CUDNN_STATUS_INTERNAL_ERROR At least one of the following conditions are met:

‣ The function was unable to allocate neccesary
timing objects.

‣ The function was unable to deallocate
neccesary timing objects.

‣ The function was unable to deallocate sample
input, filters and output.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 71

4.54. cudnnGetConvolutionBackwardDataAlgorithm
cudnnStatus_t
cudnnGetConvolutionBackwardDataAlgorithm(cudnnHandle_t
 handle,
 const cudnnFilterDescriptor_t
 wDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const cudnnConvolutionDescriptor_t
 convDesc,
 const cudnnTensorDescriptor_t
 dxDesc,
 cudnnConvolutionBwdDataPreference_t
 preference,
 size_t
 memoryLimitInbytes,
 cudnnConvolutionBwdDataAlgo_t
 *algo
)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. Based on the
input preference, this function will either return the fastest algorithm or the fastest
algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardDataAlgorithm.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

wDesc input Handle to a previously initialized filter descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDesc input Previously initialized convolution descriptor.

dxDesc input Handle to the previously initialized output tensor descriptor.

preference input Enumerant to express the preference criteria in terms of memory
requirement and speed.

memoryLimitInbytesinput It is to specify the maximum amount of GPU memory the user is willing to
use as a workspace. This is currently a placeholder and is not used.

algo output Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The numbers of feature maps of the input
tensor and output tensor differ.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 72

Return Value Meaning

‣ The dataType of the two tensor descriptors
or the filter are different.

4.55. cudnnGetConvolutionBackwardDataWorkspaceSize
cudnnStatus_t
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnnHandle_t
 handle,
 const cudnnFilterDescriptor_t
 wDesc,
 const cudnnTensorDescriptor_t
 dyDesc,
 const
 cudnnConvolutionDescriptor_t convDesc,
 const cudnnTensorDescriptor_t
 dxDesc,
 cudnnConvolutionFwdAlgo_t
 algo,
 size_t
 *sizeInBytes
)

This function returns the amount of GPU memory workspace the user needs
to allocate to be able to call cudnnConvolutionBackwardData with the
specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardData. The specified algorithm can be the result of the call
to cudnnGetConvolutionBackwardDataAlgorithm or can be chosen arbitrarily by
the user. Note that not every algorithm is available for every configuration of the input
tensor and/or every configuration of the convolution descriptor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

wDesc input Handle to a previously initialized filter descriptor.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

convDesc input Previously initialized convolution descriptor.

dxDesc input Handle to the previously initialized output tensor descriptor.

algo input Enumerant that specifies the chosen convolution algorithm

sizeInBytesoutput Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The numbers of feature maps of the input
tensor and output tensor differ.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 73

Return Value Meaning

‣ The dataType of the two tensor descriptors
or the filter are different.

CUDNN_STATUS_NOT_SUPPORTED The combination of the tensor descriptors, filter
descriptor and convolution descriptor is not
supported for the specified algorithm.

4.56. cudnnConvolutionBackwardData
cudnnStatus_t
cudnnConvolutionBackwardData(cudnnHandle_t handle,
 const void *alpha,
 const cudnnFilterDescriptor_t wDesc,
 const void *w,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionBwdDataAlgo_t algo,
 void *workSpace,
 size_t
 workSpaceSizeInBytes,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx);

This function computes the convolution gradient with respect to the output tensor using
the specified algo, returning results in gradDesc. Scaling factors alpha and beta can
be used to scale the input tensor and the output tensor respectively.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue =
alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for
additional details.

wDesc input Handle to a previously initialized filter descriptor.

w input Data pointer to GPU memory associated with the filter descriptor wDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the input differential tensor
descriptor dyDesc.

convDesc input Previously initialized convolution descriptor.

algo input Enumerant that specifies which backward data convolution algorithm shoud
be used to compute the results

workSpace input Data pointer to GPU memory to a workspace needed to able to execute the
specified algorithm. If no workspace is needed for a particular algorithm,
that pointer can be nil

workSpaceSizeInBytesinput Specifies the size in bytes of the provided workSpace

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 74

Param In/out Meaning

dxDesc input Handle to the previously initialized output tensor descriptor.

dx input/
output

Data pointer to GPU memory associated with the output tensor descriptor
dxDesc that carries the result.

This function supports only three specific combinations of data types for wDesc,
dyDesc, convDesc and dxDesc. See the following for an exhaustive list of these
configurations.

Data Type Configurations
wDesc's, dyDesc's and
dxDesc's Data Type convDesc's Data Type

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

wDesc may only have format CUDNN_TENSOR_NHWC when all of the following are
true:

‣ algo is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1
‣ dyDesc and dxDesc is NHWC HWC-packed
‣ Data type configuration is PSEUDO_HALF_CONFIG or FLOAT_CONFIG
‣ The convolution is 2-dimensional

The following is an exhaustive list of algo support for 2-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

‣ Deterministic: No
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: All
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: All
‣ Data Type Config Support: All

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 75

‣ dxDesc's feature map height + 2 * convDesc's zero-padding height must
equal 256 or less

‣ dxDesc's feature map width + 2 * convDesc's zero-padding width must
equal 256 or less

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

‣ Deterministic: Yes
‣ dyDesc Format Support: NCHW CHW-packed
‣ dxDesc Format Support: NCHW HW-packed
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

‣ wDesc's filter height must equal 32 or less
‣ wDesc's filter width must equal 32 or less
‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ yDesc Format Support: All
‣ Data Type Config Support: PSEUDO_HALF_CONFIG, FLOAT_CONFIG
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter height must be 3
‣ wDesc's filter width must be 3

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

‣ Deterministic: Yes
‣ xDesc Format Support: NCHW CHW-packed
‣ yDesc Format Support: All
‣ Data Type Config Support: All except DOUBLE_CONFIG
‣ Notes:

‣ convDesc's vertical and horizontal filter stride must equal 1
‣ wDesc's filter (height, width) must be (3,3) or (5,5)
‣ If wDesc's filter (height, width) is (5,5), data type config

TRUE_HALF_CONFIG is not supported

The following is an exhaustive list of algo support for 3-d convolutions.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0

‣ Deterministic: No

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 76

‣ dyDesc Format Support: NCDHW CDHW-packed
‣ dxDesc Format Support: All
‣ Data Type Config Support: All except TRUE_HALF_CONFIG

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Deterministic: Yes
‣ dyDesc Format Support: NCDHW-fully-packed
‣ dxDesc Format Support: NCDHW-fully-packed
‣ Data Type Config Support: All

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING

‣ Deterministic: Yes
‣ dyDesc Format Support: NCDHW CDHW-packed
‣ dxDesc Format Support: NCDHW DHW-packed
‣ Data Type Config Support: All except TRUE_HALF_CONFIG
‣ Notes:

‣ wDesc's filter height must equal 16 or less
‣ wDesc's filter width must equal 16 or less
‣ wDesc's filter depth must equal 16 or less
‣ convDesc's must have all filter strides equal to 1
‣ wDesc's filter height must be greater than convDesc's zero-padding height
‣ wDesc's filter width must be greater than convDesc's zero-padding width
‣ wDesc's filter depth must be greater than convDesc's zero-padding width

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ At least one of the following is NULL: handle,
dyDesc, wDesc, convDesc, dxDesc, dy, w,
dx, alpha, beta

‣ wDesc and dyDesc have a non-matching
number of dimensions

‣ wDesc and dxDesc have a non-matching
number of dimensions

‣ wDesc has fewer than three number of
dimensions

‣ wDesc, dxDesc and dyDesc have a non-
matching data type.

‣ wDesc and dxDesc have a non-matching
number of input feature maps per image.

‣ dyDescs's spatial sizes do not match
with the expected size as determined by
cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ dyDesc or dxDesc have negative tensor
striding

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 77

Return Value Meaning

‣ dyDesc, wDesc or dxDesc has a number of
dimensions that is not 4 or 5

‣ The chosen algo does not support the
parameters provided; see above for
exhaustive list of parameter support for each
algo

CUDNN_STATUS_MAPPING_ERROR An error occurs during the texture binding of the
filter data or the input differential tensor data

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.57. cudnnSoftmaxForward
cudnnStatus_t
cudnnSoftmaxForward(cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y);

This routine computes the softmax function.

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

algorithm input Enumerant to specify the softmax algorithm.

mode input Enumerant to specify the softmax mode.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result
+ beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc input Handle to the previously initialized output tensor descriptor.

y output Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 78

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differ.

‣ The parameters algorithm or mode have an
invalid enumerant value.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.58. cudnnSoftmaxBackward
cudnnStatus_t
cudnnSoftmaxBackward(cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *yData,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx);

This routine computes the gradient of the softmax function.

In-place operation is allowed for this routine; i.e., dy and dx pointers may be equal.
However, this requires dyDesc and dxDesc descriptors to be identical (particularly,
the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

algorithm input Enumerant to specify the softmax algorithm.

mode input Enumerant to specify the softmax mode.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc input Handle to the previously initialized input tensor descriptor.

y input Data pointer to GPU memory associated with the tensor descriptor yDesc.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 79

Param In/out Meaning

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor dyData.

dxDesc input Handle to the previously initialized output differential tensor descriptor.

dx output Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the yDesc,
dyDesc and dxDesc tensors differ.

‣ The strides nStride, cStride, hStride,
wStride of the yDesc and dyDesc tensors
differ.

‣ The datatype of the three tensors differs.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.59. cudnnCreatePoolingDescriptor
cudnnStatus_t cudnnCreatePoolingDescriptor(cudnnPoolingDescriptor_t*
 poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.60. cudnnSetPooling2dDescriptor
cudnnStatus_t
cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int windowHeight,
 int windowWidth,
 int verticalPadding,
 int horizontalPadding,
 int verticalStride,
 int horizontalStride)

This function initializes a previously created generic pooling descriptor object into a 2D
description.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 80

Param In/out Meaning

poolingDesc input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the pooling mode.

maxpoolingNanOptinput Enumerant to specify the Nan propagation mode.

windowHeightinput Height of the pooling window.

windowWidthinput Width of the pooling window.

verticalPaddinginput Size of vertical padding.

horizontalPaddinginput Size of horizontal padding

verticalStrideinput Pooling vertical stride.

horizontalStrideinput Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESSThe object was set successfully.

CUDNN_STATUS_BAD_PARAMAt least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode or maxpoolingNanOpt has an invalid
enumerant value.

4.61. cudnnGetPooling2dDescriptor
cudnnStatus_t
cudnnGetPooling2dDescriptor(const cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t *mode,
 cudnnNanPropagation_t *maxpoolingNanOpt,
 int *windowHeight,
 int *windowWidth,
 int *verticalPadding,
 int *horizontalPadding,
 int *verticalStride,
 int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

Param In/out Meaning

poolingDesc input Handle to a previously created pooling descriptor.

mode output Enumerant to specify the pooling mode.

maxpoolingNanOptoutput Enumerant to specify the Nan propagation mode.

windowHeight output Height of the pooling window.

windowWidth output Width of the pooling window.

verticalPadding output Size of vertical padding.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 81

Param In/out Meaning

horizontalPaddingoutput Size of horizontal padding.

verticalStride output Pooling vertical stride.

horizontalStride output Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

4.62. cudnnSetPoolingNdDescriptor
cudnnStatus_t
cudnnSetPoolingNdDescriptor(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function initializes a previously created generic pooling descriptor object.

Param In/out Meaning

poolingDesc input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the pooling mode.

maxpoolingNanOptinput Enumerant to specify the Nan propagation mode.

nbDims input Dimension of the pooling operation.

windowDimA output Array of dimension nbDims containing the window size for each
dimension.

paddingA output Array of dimension nbDims containing the padding size for each
dimension.

strideA output Array of dimension nbDims containing the striding size for each
dimension.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the elements of the arrays
windowDimA, paddingA or strideA is negative
or mode or maxpoolingNanOpthas an invalid
enumerant value.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 82

4.63. cudnnGetPoolingNdDescriptor
cudnnStatus_t
cudnnGetPoolingNdDescriptor(const cudnnPoolingDescriptor_t poolingDesc,
 int nbDimsRequested,
 cudnnPoolingMode_t *mode,
 cudnnNanPropagation_t *maxpoolingNanOpt,
 int *nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function queries a previously initialized generic pooling descriptor object.

Param
In/
out Meaning

poolingDesc input Handle to a previously created pooling descriptor.

nbDimsRequestedinput Dimension of the expected pooling descriptor. It is also the minimum size of
the arrays windowDimA, paddingA and strideA in order to be able to hold the
results

mode output Enumerant to specify the pooling mode.

maxpoolingNanOptinput Enumerant to specify the Nan propagation mode.

nbDims output Actual dimension of the pooling descriptor.

windowDimA output Array of dimension of at least nbDimsRequested that will be filled with the
window parameters from the provided pooling descriptor.

paddingA output Array of dimension of at least nbDimsRequested that will be filled with the
padding parameters from the provided pooling descriptor.

strideA output Array of dimension at least nbDimsRequested that will be filled with the stride
parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was queried successfully.

CUDNN_STATUS_NOT_SUPPORTED The parameter nbDimsRequested is greater than
CUDNN_DIM_MAX.

4.64. cudnnSetPooling2dDescriptor_v3
cudnnStatus_t
cudnnSetPooling2dDescriptor_v3(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 int windowHeight,
 int windowWidth,
 int verticalPadding,
 int horizontalPadding,
 int verticalStride,
 int horizontalStride)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 83

This function initializes a previously created generic pooling descriptor object into a 2D
description.

This routine is deprecated, cudnnSetPooling2dDescriptor should be used instead.

Param In/out Meaning

poolingDesc input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the pooling mode.

windowHeightinput Height of the pooling window.

windowWidthinput Width of the pooling window.

verticalPaddinginput Size of vertical padding.

horizontalPaddinginput Size of horizontal padding

verticalStrideinput Pooling vertical stride.

horizontalStrideinput Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESSThe object was set successfully.

CUDNN_STATUS_BAD_PARAMAt least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode has an invalid enumerant value.

4.65. cudnnGetPooling2dDescriptor_v3
cudnnStatus_t
cudnnGetPooling2dDescriptor_v3(const cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t *mode,
 int *windowHeight,
 int *windowWidth,
 int *verticalPadding,
 int *horizontalPadding,
 int *verticalStride,
 int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

This routine is deprecated, cudnnGetPooling2dDescriptor should be used instead.

Param In/out Meaning

poolingDesc input Handle to a previously created pooling descriptor.

mode output Enumerant to specify the pooling mode.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 84

Param In/out Meaning

windowHeight output Height of the pooling window.

windowWidth output Width of the pooling window.

verticalPadding output Size of vertical padding.

horizontalPaddingoutput Size of horizontal padding.

verticalStride output Pooling vertical stride.

horizontalStride output Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

4.66. cudnnSetPoolingNdDescriptor_v3
cudnnStatus_t
cudnnSetPoolingNdDescriptor_v3(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 int nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function initializes a previously created generic pooling descriptor object.

This routine is deprecated, cudnnSetPoolingNdDescriptor should be used instead.

Param In/out Meaning

poolingDesc input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the pooling mode.

nbDims input Dimension of the pooling operation.

windowDimA output Array of dimension nbDims containing the window size for each
dimension.

paddingA output Array of dimension nbDims containing the padding size for each
dimension.

strideA output Array of dimension nbDims containing the striding size for each
dimension.

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 85

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the elements of the arrays
windowDimA, paddingA or strideA is negative
or mode has an invalid enumerant value.

4.67. cudnnGetPoolingNdDescriptor_v3
cudnnStatus_t
cudnnGetPoolingNdDescriptor_v3(const cudnnPoolingDescriptor_t poolingDesc,
 int nbDimsRequested,
 cudnnPoolingMode_t *mode,
 int *nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function queries a previously initialized generic pooling descriptor object.

This routine is deprecated, cudnnGetPoolingNdDescriptor should be used instead.

Param
In/
out Meaning

poolingDesc input Handle to a previously created pooling descriptor.

nbDimsRequestedinput Dimension of the expected pooling descriptor. It is also the minimum size of
the arrays windowDimA, paddingA and strideA in order to be able to hold the
results

mode output Enumerant to specify the pooling mode.

nbDims output Actual dimension of the pooling descriptor.

windowDimA output Array of dimension of at least nbDimsRequested that will be filled with the
window parameters from the provided pooling descriptor.

paddingA output Array of dimension of at least nbDimsRequested that will be filled with the
padding parameters from the provided pooling descriptor.

strideA output Array of dimension at least nbDimsRequested that will be filled with the stride
parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was queried successfully.

CUDNN_STATUS_NOT_SUPPORTED The parameter nbDimsRequested is greater than
CUDNN_DIM_MAX.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 86

4.68. cudnnSetPooling2dDescriptor_v4
cudnnStatus_t
cudnnSetPooling2dDescriptor_v4(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int windowHeight,
 int windowWidth,
 int verticalPadding,
 int horizontalPadding,
 int verticalStride,
 int horizontalStride)

This function is equivalent to cudnnSetPooling2dDescriptor.

4.69. cudnnGetPooling2dDescriptor_v4
cudnnStatus_t
cudnnGetPooling2dDescriptor_v4(const cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t *mode,
 cudnnNanPropagation_t *maxpoolingNanOpt,
 int *windowHeight,
 int *windowWidth,
 int *verticalPadding,
 int *horizontalPadding,
 int *verticalStride,
 int *horizontalStride)

This function is equivalent to cudnnGetPooling2dDescriptor.

4.70. cudnnSetPoolingNdDescriptor_v4
cudnnStatus_t
cudnnSetPoolingNdDescriptor_v4(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 cudnnNanPropagation_t maxpoolingNanOpt,
 int nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function is equivalent to cudnnSetPoolingNdDescriptor.

4.71. cudnnGetPoolingNdDescriptor_v4
cudnnStatus_t
cudnnGetPoolingNdDescriptor_v4(const cudnnPoolingDescriptor_t poolingDesc,
 int nbDimsRequested,
 cudnnPoolingMode_t *mode,
 cudnnNanPropagation_t *maxpoolingNanOpt,
 int *nbDims,
 int windowDimA[],
 int paddingA[],
 int strideA[])

This function is equivalent to cudnnGetPoolingNdDescriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 87

4.72. cudnnDestroyPoolingDescriptor
cudnnStatus_t cudnnDestroyPoolingDescriptor(cudnnPoolingDescriptor_t
 poolingDesc)

This function destroys a previously created pooling descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.73. cudnnGetPooling2dForwardOutputDim
cudnnStatus_t
cudnnGetPooling2dForwardOutputDim(const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int *outN,
 int *outC,
 int *outH,
 int *outW)

This function provides the output dimensions of a tensor after 2d pooling has been
applied

Each dimension h and w of the output images is computed as followed:

 outputDim = 1 + (inputDim + 2*padding - windowDim)/poolingStride;

Param In/out Meaning

poolingDesc input Handle to a previously inititalized pooling descriptor.

inputDesc input Handle to the previously initialized input tensor descriptor.

N output Number of images in the output

C output Number of channels in the output

H output Height of images in the output

W output Width of images in the output

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ poolingDesc has not been initialized.
‣ poolingDesc or inputDesc has an invalid

number of dimensions (2 and 4 respectively
are required).

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 88

4.74. cudnnGetPoolingNdForwardOutputDim
cudnnStatus_t
cudnnGetPoolingNdForwardOutputDim(const cudnnPoolingDescriptor_t poolingDesc,
 const cudnnTensorDescriptor_t inputDesc,
 int nbDims,
 int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been
applied

Each dimension of the (nbDims-2)-D images of the output tensor is computed as
followed:

 outputDim = 1 + (inputDim + 2*padding - windowDim)/poolingStride;

Param In/out Meaning

poolingDesc input Handle to a previously inititalized pooling descriptor.

inputDesc input Handle to the previously initialized input tensor descriptor.

nbDims input Number of dimensions in which pooling is to be applied.

outDimA output Array of nbDims output dimensions

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ poolingDesc has not been initialized.
‣ The value of nbDims is inconsistent with

the dimensionality of poolingDesc and
inputDesc.

4.75. cudnnPoolingForward
cudnnStatus_t
cudnnPoolingForward(cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y);

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 89

This function computes pooling of input values (i.e., the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

poolingDesc input Handle to a previously initialized pooling descriptor.

alpha, beta input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue =
alpha[0]*result + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc input Handle to the previously initialized output tensor descriptor.

y output Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c of the input tensor and
output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

CUDNN_STATUS_NOT_SUPPORTED The wStride of input tensor or output tensor is
not 1.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 90

4.76. cudnnPoolingBackward
cudnnStatus_t
cudnnPoolingBackward(cudnnHandle_t handle,
 const cudnnPoolingDescriptor_t poolingDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *xData,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx)

This function computes the gradient of a pooling operation.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed

Param
In/
out Meaning

handle input Handle to a previously created cuDNN context.

poolingDescinput Handle to the previously initialized pooling descriptor.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc input Handle to the previously initialized input tensor descriptor.

y input Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor dyData.

xDesc input Handle to the previously initialized output tensor descriptor.

x input Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc input Handle to the previously initialized output differential tensor descriptor.

dx output Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the yDesc and
dyDesc tensors differ.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 91

Return Value Meaning

‣ The strides nStride, cStride, hStride,
wStride of the yDesc and dyDesc tensors
differ.

‣ The dimensions n,c,h,w of the dxDesc and
dxDesc tensors differ.

‣ The strides nStride, cStride, hStride,
wStride of the xDesc and dxDesc tensors
differ.

‣ The datatype of the four tensors differ.

CUDNN_STATUS_NOT_SUPPORTED The wStride of input tensor or output tensor is
not 1.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.77. cudnnActivationForward
cudnnStatus_t
 cudnnActivationForward(cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t srcDesc,
 const void *srcData,
 const void *beta,
 const cudnnTensorDescriptor_t destDesc,
 void *destData)

This routine applies a specified neuron activation function element-wise over each input
value.

In-place operation is allowed for this routine; i.e., xData and yData pointers
may be equal. However, this requires xDesc and yDesc descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of xDesc and yDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN context.

activationDesc,input Activation descriptor.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 92

Param
In/
out Meaning

yDesc input Handle to the previously initialized output tensor descriptor.

y output Data pointer to GPU memory associated with the output tensor descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The parameter mode has an invalid enumerant
value.

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides
nStride,cStride,hStride,wStride of the
input tensor and output tensors differ and in-
place operation is used (i.e., x and y pointers
are equal).

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.78. cudnnActivationBackward
cudnnStatus_t
 cudnnActivationBackward(cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t srcDesc,
 const void *srcData,
 const cudnnTensorDescriptor_t srcDiffDesc,
 const void *srcDiffData,
 const cudnnTensorDescriptor_t destDesc,
 const void *destData,
 const void *beta,
 const cudnnTensorDescriptor_t destDiffDesc,
 void *destDiffData)

This routine computes the gradient of a neuron activation function.

In-place operation is allowed for this routine; i.e. dy and dx pointers may be
equal. However, this requires the corresponding tensor descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of yDesc and xDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 93

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

activationDesc,input Activation descriptor.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc input Handle to the previously initialized input tensor descriptor.

y input Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor dyDesc.

xDesc input Handle to the previously initialized output tensor descriptor.

x input Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc input Handle to the previously initialized output differential tensor descriptor.

dx output Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The strides nStride, cStride, hStride,
wStride of the input differential tensor and
output differential tensors differ and in-place
operation is used.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides nStride, cStride, hStride,
wStride of the input tensor and the input
differential tensor differ.

‣ The strides nStride, cStride, hStride,
wStride of the output tensor and the output
differential tensor differ.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 94

4.79. cudnnCreateActivationDescriptor
cudnnStatus_t
 cudnnCreateActivationDescriptor(cudnnActivationDescriptor_t
 *activationDesc)

This function creates a activation descriptor object by allocating the memory needed to
hold its opaque structure.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.80. cudnnSetActivationDescriptor
cudnnStatus_t
cudnnSetActivationDescriptor(cudnnActivationDescriptor_t
 activationDesc,
 cudnnActivationMode_t mode,
 cudnnNanPropagation_t reluNanOpt,
 double reluCeiling)

This function initializes a previously created generic activation descriptor object.

Param In/out Meaning

activationDesc,input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the activation mode.

reluNanOpt, input Enumerant to specify the Nan propagation mode.

reluCeiling input floating point number to specify the clipping threashod when the activation
mode is set to CUDNN_ACTIVATION_CLIPPED_RELU.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESSThe object was set successfully.

CUDNN_STATUS_BAD_PARAMmode or reluNanOpt has an invalid enumerant value.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 95

4.81. cudnnGetActivationDescriptor
cudnnStatus_t
 cudnnGetActivationDescriptor(const cudnnActivationDescriptor_t
 activationDesc,
 cudnnActivationMode_t *mode,
 cudnnNanPropagation_t
 *reluNanOpt,
 double
 *reluCeiling)

This function queries a previously initialized generic activation descriptor object.

Param
In/
out Meaning

activationDescinput Handle to a previously created activation descriptor.

mode output Enumerant to specify the activation mode.

reluNanOpt, output Enumerant to specify the Nan propagation mode.

reluCeiling output floating point number to specify the clipping threashod when the activation mode
is set to CUDNN_ACTIVATION_CLIPPED_RELU.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was queried successfully.

4.82. cudnnDestroyActivationDescriptor
cudnnStatus_t
 cudnnDestroyActivationDescriptor(cudnnActivationDescriptor_t
 activationDesc)

This function destroys a previously created activation descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.83. cudnnActivationForward_v3
cudnnStatus_t
cudnnActivationForward_v3(cudnnHandle_t handle,
 cudnnActivationMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *xData,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *yData)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 96

This routine applies a specified neuron activation function element-wise over each input
value.

This routine is deprecated, cudnnActivationForward should be used instead.

In-place operation is allowed for this routine; i.e., xData and yData pointers
may be equal. However, this requires xDesc and yDesc descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of xDesc and yDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN context.

mode input Enumerant to specify the activation mode.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc input Handle to the previously initialized output tensor descriptor.

y output Data pointer to GPU memory associated with the output tensor descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The parameter mode has an invalid enumerant
value.

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides
nStride,cStride,hStride,wStride of the
input tensor and output tensors differ and in-
place operation is used (i.e., x and y pointers
are equal).

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 97

Return Value Meaning

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.84. cudnnActivationBackward_v3
cudnnStatus_t
cudnnActivationBackward_v3(cudnnHandle_t handle,
 cudnnActivationMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx);

This routine computes the gradient of a neuron activation function.

This routine is deprecated, cudnnActivationBackward should be used instead.

In-place operation is allowed for this routine; i.e. dy and dx pointers may be
equal. However, this requires the corresponding tensor descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of yDesc and xDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

mode input Enumerant to specify the activation mode.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc input Handle to the previously initialized input tensor descriptor.

y input Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc input Handle to the previously initialized input differential tensor descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor dyDesc.

xDesc input Handle to the previously initialized output tensor descriptor.

x input Data pointer to GPU memory associated with the output tensor descriptor xDesc.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 98

Param In/out Meaning

dxDesc input Handle to the previously initialized output differential tensor descriptor.

dx output Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The parameter mode has an invalid enumerant
value.

‣ The strides nStride, cStride, hStride,
wStride of the input differential tensor and
output differential tensors differ and in-place
operation is used.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides nStride, cStride, hStride,
wStride of the input tensor and the input
differential tensor differ.

‣ The strides nStride, cStride, hStride,
wStride of the output tensor and the output
differential tensor differ.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.85. cudnnActivationForward_v4
cudnnStatus_t
 cudnnActivationForward_v4(cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t srcDesc,
 const void *srcData,
 const void *beta,
 const cudnnTensorDescriptor_t destDesc,
 void *destData)

This routine is equivalent to cudnnActivationForward.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 99

4.86. cudnnActivationBackward_v4
cudnnStatus_t
 cudnnActivationBackward_v4(cudnnHandle_t handle,
 cudnnActivationDescriptor_t activationDesc,
 const void *alpha,
 const cudnnTensorDescriptor_t srcDesc,
 const void *srcData,
 const cudnnTensorDescriptor_t srcDiffDesc,
 const void *srcDiffData,
 const cudnnTensorDescriptor_t destDesc,
 const void *destData,
 const void *beta,
 const cudnnTensorDescriptor_t destDiffDesc,
 void *destDiffData)

This routine is equivalent to cudnnActivationBackward.

4.87. cudnnCreateLRNDescriptor
cudnnStatus_t cudnnCreateLRNDescriptor(cudnnLRNDescriptor_t* poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and
DivisiveNormalization layers operation and returns a descriptor used with subsequent
layer forward and backward calls.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.88. cudnnSetLRNDescriptor
cudnnStatus_t
CUDNNWINAPI cudnnSetLRNDescriptor(cudnnLRNDescriptor_t normDesc,
 unsigned lrnN,
 double lrnAlpha,
 double lrnBeta,
 double lrnK);

This function initializes a previously created LRN descriptor object.

Macros CUDNN_LRN_MIN_N, CUDNN_LRN_MAX_N, CUDNN_LRN_MIN_K,
CUDNN_LRN_MIN_BETA defined in cudnn.h specify valid ranges for parameters.

Values of double parameters will be cast down to the tensor datatype during
computation.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 100

Param
In/
out Meaning

normDesc output Handle to a previously created LRN descriptor.

lrnN input Normalization window width in elements. LRN layer uses a window [center-
lookBehind, center+lookAhead], where lookBehind = floor((lrnN-1)/2), lookAhead
= lrnN-lookBehind-1. So for n=10, the window is [k-4...k...k+5] with a total of 10
samples. For DivisiveNormalization layer the window has the same extents as above
in all 'spatial' dimensions (dimA[2], dimA[3], dimA[4]). By default lrnN is set to 5 in
cudnnCreateLRNDescriptor.

lrnAlpha input Value of the alpha variance scaling parameter in the normalization formula. Inside
the library code this value is divided by the window width for LRN and by (window
width)^#spatialDimensions for DivisiveNormalization. By default this value is set to
1e-4 in cudnnCreateLRNDescriptor.

lrnBeta input Value of the beta power parameter in the normalization formula. By default this
value is set to 0.75 in cudnnCreateLRNDescriptor.

lrnK input Value of the k parameter in normalization formula. By default this value is set to
2.0.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM One of the input parameters was out of valid range
as described above.

4.89. cudnnGetLRNDescriptor
cudnnStatus_t
CUDNNWINAPI cudnnGetLRNDescriptor(cudnnLRNDescriptor_t normDesc,
 unsigned *lrnN,
 double *lrnAlpha,
 double *lrnBeta,
 double *lrnK);

This function retrieves values stored in the previously initialized LRN descriptor object.

Param In/out Meaning

normDesc output Handle to a previously created LRN descriptor.

lrnN,
lrnAlpha,
lrnBeta, lrnK

output Pointers to receive values of parameters stored in the descriptor object.
See cudnnSetLRNDescriptor for more details. Any of these pointers can be
NULL (no value is returned for the corresponding parameter).

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS Function completed successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 101

4.90. cudnnDestroyLRNDescriptor
cudnnStatus_t cudnnDestroyLRNDescriptor(cudnnLRNDescriptor_t lrnDesc)

This function destroys a previously created LRN descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.91. cudnnLRNCrossChannelForward
cudnnStatus_t CUDNNWINAPI cudnnLRNCrossChannelForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void* alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y);

This function performs the forward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN library descriptor.

normDesc input Handle to a previously intialized LRN parameter descriptor.

lrnMode input LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is
implemented. Normalization is performed along the tensor's dimA[1].

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the layer output value
with prior value in the destination tensor as follows: dstValue = alpha[0]*resultValue
+ beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc,
yDesc

input Tensor descriptor objects for the input and output tensors.

x input Input tensor data pointer in device memory.

y output Output tensor data pointer in device memory.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 102

Return Value Meaning

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the tensor pointers x, y is NULL.
‣ Number of input tensor dimensions is 2 or

less.
‣ LRN descriptor parameters are outside of

their valid ranges.
‣ One of tensor parameters is 5D but is not in

NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ Any of the input tensor datatypes is not the
same as any of the output tensor datatype.

‣ x and y tensor dimensions mismatch.
‣ Any tensor parameters strides are negative.

4.92. cudnnLRNCrossChannelBackward
cudnnStatus_t CUDNNWINAPI cudnnLRNCrossChannelBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnLRNMode_t lrnMode,
 const void* alpha,
 const cudnnTensorDescriptor_t yDesc,
 const void *y,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx);

This function performs the backward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN library descriptor.

normDesc input Handle to a previously intialized LRN parameter descriptor.

lrnMode input LRN layer mode of operation. Currently only CUDNN_LRN_CROSS_CHANNEL_DIM1 is
implemented. Normalization is performed along the tensor's dimA[1].

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the layer output value with
prior value in the destination tensor as follows: dstValue = alpha[0]*resultValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 103

Param
In/
out Meaning

yDesc, y input Tensor descriptor and pointer in device memory for the layer's y data.

dyDesc,
dy

input Tensor descriptor and pointer in device memory for the layer's input cumulative loss
differential data dy (including error backpropagation).

xDesc, x input Tensor descriptor and pointer in device memory for the layer's x data. Note that these
values are not modified during backpropagation.

dxDesc,
dx

output Tensor descriptor and pointer in device memory for the layer's resulting cumulative
loss differential data dx (including error backpropagation).

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the tensor pointers x, y is NULL.
‣ Number of input tensor dimensions is 2 or

less.
‣ LRN descriptor parameters are outside of

their valid ranges.
‣ One of tensor parameters is 5D but is not in

NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ Any of the input tensor datatypes is not the
same as any of the output tensor datatype.

‣ Any pairwise tensor dimensions mismatch for
x,y,dx,dy.

‣ Any tensor parameters strides are negative.

4.93. cudnnDivisiveNormalizationForward

cudnnStatus_t CUDNNWINAPI cudnnDivisiveNormalizationForward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
 void *temp,
 void *temp2,
 const void *beta,
 const cudnnTensorDescriptor_t yDesc,
 void *y);

This function performs the forward spatial DivisiveNormalization layer computation.
It divides every value in a layer by the standard deviation of it's spatial neighbors as

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 104

described in "What is the Best Multi-Stage Architecture for Object Recognition", Jarrett
2009, Local Contrast Normalization Layer section. Note that Divisive Normalization
only implements the x/max(c, sigma_x) portion of the computation, where sigma_x
is the variance over the spatial neighborhood of x. The full LCN (Local Contrastive
Normalization) computation can be implemented as a two-step process:

x_m = x-mean(x);

y = x_m/max(c, sigma(x_m));

The "x-mean(x)" which is often referred to as "subtractive normalization" portion of the
computation can be implemented using cuDNN average pooling layer followed by a call
to addTensor.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

normDesc input Handle to a previously intialized LRN parameter descriptor. This descriptor is used
for both LRN and DivisiveNormalization layers.

divNormModeinput DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by
the user.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the layer output
value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc,
yDesc

input Tensor descriptor objects for the input and output tensors. Note that xDesc is
shared between x, means, temp and temp2 tensors.

x input Input tensor data pointer in device memory.

means input Input means tensor data pointer in device memory. Note that this tensor can be
NULL (in that case it's values are assumed to be zero during the computation).
This tensor also doesn't have to contain means, these can be any values, a
frequently used variation is a result of convolution with a normalized positive
kernel (such as Gaussian).

temp,
temp2

workspaceTemporary tensors in device memory. These are used for computing intermediate
values during the forward pass. These tensors do not have to be preserved as
inputs from forward to the backward pass. Both use xDesc as their descriptor.

y output Pointer in device memory to a tensor for the result of the forward
DivisiveNormalization computation.

Possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 105

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the tensor pointers x, y, temp,
temp2 is NULL.

‣ Number of input tensor or output tensor
dimensions is outside of [4,5] range.

‣ A mismatch in dimensions between any two of
the input or output tensors.

‣ For in-place computation when pointers x ==
y, a mismatch in strides between the input
data and output data tensors.

‣ Alpha or beta pointer is NULL.
‣ LRN descriptor parameters are outside of

their valid ranges.
‣ Any of the tensor strides are negative.

CUDNN_STATUS_UNSUPPORTED At least one of the following conditions are met:

‣ Any of the input and output tensor strides
mismatch (for the same dimension).

4.94. cudnnDivisiveNormalizationBackward
 cudnnStatus_t
CUDNNWINAPI cudnnDivisiveNormalizationBackward(
 cudnnHandle_t handle,
 cudnnLRNDescriptor_t normDesc,
 cudnnDivNormMode_t mode,
 const void *alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const void *means,
 const void *dy,
 void *temp,
 void *temp2,
 const void *beta,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 void *dMeans);

This function performs the backward DivisiveNormalization layer computation.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Param
In/
out Meaning

handle input Handle to a previously created cuDNN library descriptor.

normDesc input Handle to a previously intialized LRN parameter descriptor (this descriptor is used
for both LRN and DivisiveNormalization layers).

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 106

Param
In/
out Meaning

mode input DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by the
user.

alpha,
beta

input Pointers to scaling factors (in host memory) used to blend the layer output value
with prior value in the destination tensor as follows: dstValue = alpha[0]*resultValue
+ beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc, x,
means

input Tensor descriptor and pointers in device memory for the layer's x and means data.
Note: the means tensor is expected to be precomputed by the user. It can also
contain any valid values (not required to be actual means, and can be for instance
a result of a convolution with a Gaussian kernel).

dy input Tensor pointer in device memory for the layer's dy cumulative loss differential data
(error backpropagation).

temp,
temp2

workspaceTemporary tensors in device memory. These are used for computing intermediate
values during the backward pass. These tensors do not have to be preserved from
forward to backward pass. Both use xDesc as a descriptor.

dxDesc input Tensor descriptor for dx and dMeans.

dx,
dMeans

output Tensor pointers (in device memory) for the layer's resulting cumulative gradients dx
and dMeans (dLoss/dx and dLoss/dMeans). Both share the same descriptor.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the tensor pointers x, dx, temp,
tmep2, dy is NULL.

‣ Number of any of the input or output tensor
dimensions is not within the [4,5] range.

‣ Either alpha or beta pointer is NULL.
‣ A mismatch in dimensions between xDesc and

dxDesc.
‣ LRN descriptor parameters are outside of

their valid ranges.
‣ Any of the tensor strides is negative.

CUDNN_STATUS_UNSUPPORTED At least one of the following conditions are met:

‣ Any of the input and output tensor strides
mismatch (for the same dimension).

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 107

4.95. cudnnBatchNormalizationForwardInference
 cudnnStatus_t CUDNNWINAPI cudnnBatchNormalizationForwardInference(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScale,
 const void *bnBias,
 const void *estimatedMean,
 const void *estimatedVariance,
 double epsilon);

This function performs the forward BatchNormalization layer computation for inference
phase. This layer is based on the paper "Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift", S. Ioffe, C. Szegedy, 2015.

Only 4D and 5D tensors are supported.

The input transformation performed by this function is defined as: y := alpha*y + beta
*(bnScale * (x-estimatedMean)/sqrt(epsilon + estimatedVariance)+bnBias)

The epsilon value has to be the same during training, backpropagation and inference.

For training phase use cudnnBatchNormalizationForwardTraining.

Much higher performance when HW-packed tensors are used for all of x, dy, dx.

Param Meaning

handle Input. Handle to a previously created cuDNN library descriptor.

mode Input. Mode of operation (spatial or per-activation).
cudnnBatchNormMode_t

alpha, beta Inputs. Pointers to scaling factors (in host memory) used to blend the
layer output value with prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to
this section for additional details.

xDesc, yDesc, x, y Tensor descriptors and pointers in device memory for the layer's x and y
data.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 108

Param Meaning

bnScaleBiasMeanVarDesc,
bnScaleData, bnBiasData

Inputs. Tensor descriptor and pointers in device memory for the batch
normalization scale and bias parameters (in the original paper bias is
referred to as beta and scale as gamma).

estimatedMean,
estimatedVariance

Inputs. Mean and variance tensors (these have the same descriptor
as the bias and scale). It is suggested that resultRunningMean,
resultRunningVariance from the cudnnBatchNormalizationForwardTraining
call accumulated during the training phase are passed as inputs here.

epsilon Input. Epsilon value used in the batch normalization formula. Minimum
allowed value is CUDNN_BN_MIN_EPSILON defined in cudnn.h.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the pointers alpha, beta,
x, y, bnScaleData, bnBiasData,
estimatedMean, estimatedInvVariance
is NULL.

‣ Number of xDesc or yDesc tensor descriptor
dimensions is not within the [4,5] range.

‣ bnScaleBiasMeanVarDesc dimensions are not
1xC(x1)x1x1 for spatial or 1xC(xD)xHxW for
per-activation mode (parenthesis for 5D).

‣ epsilon value is less than
CUDNN_BN_MIN_EPSILON

‣ Dimensions or data types mismatch for xDesc,
yDesc

4.96. cudnnBatchNormalizationForwardTraining
 cudnnStatus_t CUDNNWINAPI cudnnBatchNormalizationForwardTraining(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alpha,
 const void *beta,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t yDesc,
 void *y,
 const cudnnTensorDescriptor_t bnScaleBiasMeanVarDesc,
 const void *bnScale,
 const void *bnBias,
 double exponentialAverageFactor,
 void *resultRunningMean,
 void *resultRunningInvVariance,
 double epsilon,
 void *resultSaveMean,
 void *resultSaveVariance);

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 109

This function performs the forward BatchNormalization layer computation for training
phase.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and inference.

For inference phase use cudnnBatchNormalizationForwardInference.

Much higher performance for HW-packed tensors for both x and y.

Param Meaning

handle Handle to a previously created cuDNN library descriptor.

mode Mode of operation (spatial or per-activation). cudnnBatchNormMode_t

alpha, beta Inputs. Pointers to scaling factors (in host memory) used to blend the
layer output value with prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to
this section for additional details.

xDesc, yDesc, x, y Tensor descriptors and pointers in device memory for the layer's x and y
data.

bnScaleBiasMeanVarDesc Shared tensor descriptor desc for all the 6 tensors below in the argument
list. The dimensions for this tensor descriptor are dependent on the
normalization mode.

bnScale, bnBias Inputs. Pointers in device memory for the batch normalization scale and
bias parameters (in original paper bias is referred to as beta and scale
as gamma). Note that bnBias parameter can replace the previous layer's
bias parameter for improved efficiency.

exponentialAverageFactor Input. Factor used in the moving average computation runningMean =
newMean*factor + runningMean*(1-factor). Use a factor=1/(1+n) at N-
th call to the function to get Cumulative Moving Average (CMA) behavior
CMA[n] = (x[1]+...+x[n])/n. Since CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1)=
((n+1)*CMA[n]-CMA[n])/(n+1) + x[n+1]/(n+1) = CMA[n]*(1-1/(n+1))+x[n
+1]*1/(n+1)

resultRunningMean,
resultRunningVariance

Inputs/outputs. Running mean and variance tensors (these have the same
descriptor as the bias and scale). Both of these pointers can be NULL
but only at the same time. The value stored in resultRunningVariance
(or passed as an input in inference mode) is the moving average of
variance[x] where variance is computed either over batch or spatial
+batch dimensions depending on the mode. If these pointers are not
NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon Epsilon value used in the batch normalization formula. Minimum allowed
value is CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value
should be used in forward and backward functions.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 110

Param Meaning

resultSaveMean,
resultSaveInvVariance

Outputs. Optional cache to save intermediate results computed during
the forward pass - these can then be reused to speed up the backward
pass. For this to work correctly, the bottom layer data has to remain
unchanged until the backward function is called. Note that both of these
parameters can be NULL but only at the same time. It is recommended
to use this cache since memory overhead is relatively small because
these tensors have a much lower product of dimensions than the data
tensors.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the pointers alpha, beta, x, y,
bnScaleData, bnBiasData is NULL.

‣ Number of xDesc or yDesc tensor descriptor
dimensions is not within the [4,5] range.

‣ bnScaleBiasMeanVarDesc dimensions are not
1xC(x1)x1x1 for spatial or 1xC(xD)xHxW for
per-activation mode (parens for 5D).

‣ Exactly one of resultSaveMean,
resultSaveInvVariance pointers is NULL.

‣ Exactly one of resultRunningMean,
resultRunningInvVariance pointers is NULL.

‣ epsilon value is less than
CUDNN_BN_MIN_EPSILON

‣ Dimensions or data types mismatch for xDesc,
yDesc

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 111

4.97. cudnnBatchNormalizationBackward
cudnnStatus_t CUDNNWINAPI cudnnBatchNormalizationBackward(
 cudnnHandle_t handle,
 cudnnBatchNormMode_t mode,
 const void *alphaDataDiff,
 const void *betaDataDiff,
 const void *alphaParamDiff,
 const void *betaParamDiff,
 const cudnnTensorDescriptor_t xDesc,
 const void *x,
 const cudnnTensorDescriptor_t dyDesc,
 const void *dy,
 const cudnnTensorDescriptor_t dxDesc,
 void *dx,
 const cudnnTensorDescriptor_t bnScaleBiasDiffDesc,
 const void *bnScale,
 void *resultBnScaleDiff,
 void *resultBnBiasDiff,
 double epsilon,
 const void *savedMean,
 const void *savedInvVariance
);

This function performs the backward BatchNormalization layer computation.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and inference.

Much higher performance when HW-packed tensors are used for all of x, dy, dx.

Param Meaning

handle Handle to a previously created cuDNN library descriptor.

mode Mode of operation (spatial or per-activation). cudnnBatchNormMode_t

alphaDataDiff,
betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient
output dx with a prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

alphaParamDiff,
betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient
outputs dBnScaleResult and dBnBiasResult with prior values in the destination
tensor as follows: dstValue = alpha[0]*resultValue + beta[0]*priorDstValue.
Please refer to this section for additional details.

xDesc, x, dyDesc, dy,
dxDesc, dx

Tensor descriptors and pointers in device memory for the layer's x data,
backpropagated differential dy (inputs) and resulting differential with respect
to x, dx (output).

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 112

Param Meaning

bnScaleBiasDiffDesc Shared tensor descriptor for all the 5 tensors below in the argument list
(bnScale, resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance).
The dimensions for this tensor descriptor are dependent on normalization
mode. Note: The data type of this tensor descriptor must be 'float' for FP16
and FP32 input tensors, and 'double' for FP64 input tensors.

bnScale Input. Pointers in device memory for the batch normalization scale parameter
(in original paper bias is referred to as gamma). Note that bnBias parameter is
not needed for this layer's computation.

resultBnScaleDiff,
resultBnBiasDiff

Outputs. Pointers in device memory for the resulting scale and bias
differentials computed by this routine. Note that scale and bias gradients are
not backpropagated below this layer (since they are dead-end computation
DAG nodes).

epsilon Epsilon value used in batch normalization formula. Minimum allowed value is
CUDNN_BN_MIN_EPSILON defined in cudnn.h. Same epsilon value should be
used in forward and backward functions.

savedMean,
savedInvVariance

Inputs. Optional cache parameters containing saved intermediate results
computed during the forward pass. For this to work correctly, the layer's x and
bnScale, bnBias data has to remain unchanged until the backward function
is called. Note that both of these parameters can be NULL but only at the
same time. It is recommended to use this cache since the memory overhead is
relatively small.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ Any of the pointers alpha, beta, x, dy,
dx, bnScale, resultBnScaleDiff,
resultBnBiasDiff is NULL.

‣ Number of xDesc or yDesc or dxDesc tensor
descriptor dimensions is not within the [4,5]
range.

‣ bnScaleBiasMeanVarDesc dimensions are not
1xC(x1)x1x1 for spatial or 1xC(xD)xHxW for
per-activation mode (parentheses for 5D).

‣ Exactly one of savedMean, savedInvVariance
pointers is NULL.

‣ epsilon value is less than
CUDNN_BN_MIN_EPSILON

‣ Dimensions or data types mismatch for any
pair of xDesc, dyDesc, dxDesc

4.98. cudnnDeriveBNTensorDescriptor
cudnnStatus_t CUDNNWINAPI cudnnDeriveBNTensorDescriptor(
 cudnnTensorDescriptor_t derivedBnDesc,
 const cudnnTensorDescriptor_t xDesc,
 cudnnBatchNormMode_t mode);

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 113

Derives a secondary tensor descriptor for BatchNormalization scale, invVariance, bnBias,
bnScale subtensors from the layer's x data descriptor. Use the tensor descriptor produced
by this function as the bnScaleBiasMeanVarDesc and bnScaleBiasDiffDesc parameters
in Spatial and Per-Activation Batch Normalization forward and backward functions.
Resulting dimensions will be 1xC(x1)x1x1 for BATCHNORM_MODE_SPATIAL and
1xC(xD)xHxW for BATCHNORM_MODE_PER_ACTIVATION (parentheses for 5D). For
HALF input data type the resulting tensor descriptor will have a FLOAT type. For other
data types it will have the same type as the input data.

Only 4D and 5D tensors are supported.

derivedBnDesc has to be first created using cudnnCreateTensorDescriptor

xDesc is the descriptor for the layer's x data and has to be setup with proper
dimensions prior to calling this function.

Param In/out Meaning

derivedBnDescoutput Handle to a previously created tensor descriptor.

xDesc input Handle to a previously created and initialized layer's x data descriptor.

mode input Batch normalization layer mode of operation.

Possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM Invalid Batch Normalization mode.

4.99. cudnnCreateRNNDescriptor
cudnnStatus_t cudnnCreateRNNDescriptor(cudnnRNNDescriptor_t * rnnDesc)

This function creates a generic RNN descriptor object by allocating the memory needed
to hold its opaque structure.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.100. cudnnDestroyRNNDescriptor
cudnnStatus_t cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 114

This function destroys a previously created RNN descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.101. cudnnSetRNNDescriptor
cudnnStatus_t
cudnnSetRNNDescriptor(cudnnRNNDescriptor_t rnnDesc,
 int hiddenSize,
 int numLayers,
 cudnnDropoutDescriptor_t dropoutDesc,
 cudnnRNNInputMode_t inputMode,
 cudnnDirectionMode_t direction,
 cudnnRNNMode_t mode,
 cudnnDataType_t dataType)

This function initializes a previously created RNN descriptor object.

Larger networks (eg. longer sequences, more layers) are expected to be more
efficient than smaller networks.

Param In/out Meaning

rnnDesc input/
output

A previously created RNN descriptor.

hiddenSize input Size of the internal hidden state for each layer.

numLayers input Number of stacked layers.

dropoutDesc input Handle to a previously created and initialized dropout descriptor.

inputMode input Specifies the behavior at the input to the first layer

direction input Specifies the recurrence pattern. (eg. bidirectional)

mode input The type of RNN to compute.

dataType input Math precision.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM Either at least one of the parameters
hiddenSize, numLayers was zero or negative,
one of inputMode, direction, mode,
dataType has an invalid enumerant value,
dropoutDesc is an invalid dropout descriptor or
rnnDesc has not been created correctly.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 115

4.102. cudnnGetRNNWorkspaceSize
cudnnStatus_t
cudnnGetRNNWorkspaceSize(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 size_t *sizeInBytes)

This function is used to query the amount of work space required to execute the RNN
described by rnnDesc with inputs dimensions defined by xDesc.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

rnnDesc input A previously initialized RNN descriptor.

seqLength input Number of iterations to unroll over.

xDesc input An array of tensor descriptors describing the input to each recurrent
iteration. Each tensor descriptor must have the same second
dimension. The first dimension of the tensors may decrease from
element n to element n+1 but may not increase.

sizeInBytes output Minimum amount of GPU memory needed as workspace to be able
to execute an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors in xDesc is

invalid.
‣ The descriptors in xDesc have inconsistent

second dimensions, strides or data types.
‣ The descriptors in xDesc have increasing first

dimensions.
‣ The descriptors in xDesc is not fully packed.

CUDNN_STATUS_NOT_SUPPORTED The the data types in tensors described by xDesc is
not supported.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 116

4.103. cudnnGetRNNTrainingReserveSize
cudnnStatus_t
cudnnGetRNNTrainingReserveSize(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 size_t *sizeInBytes)

This function is used to query the amount of reserved space required for training
the RNN described by rnnDesc with inputs dimensions defined by xDesc.
The same reserve space must be passed to cudnnRNNForwardTraining,
cudnnRNNBackwardData and cudnnRNNBackwardWeights. Each of these calls
overwrites the contents of the reserve space, however it can safely be copied if reuse is
required.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

rnnDesc input A previously initialized RNN descriptor.

seqLength input Number of iterations to unroll over.

xDesc input An array of tensor descriptors describing the input to each recurrent
iteration. Each tensor descriptor must have the same second
dimension. The first dimension of the tensors may decrease from
element n to element n+1 but may not increase.

sizeInBytes output Minimum amount of GPU memory needed as reserve space to be
able to train an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors in xDesc is

invalid.
‣ The descriptors in xDesc have inconsistent

second dimensions, strides or data types.
‣ The descriptors in xDesc have increasing first

dimensions.
‣ The descriptors in xDesc is not fully packed.

CUDNN_STATUS_NOT_SUPPORTED The the data types in tensors described by xDesc is
not supported.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 117

4.104. cudnnGetRNNParamsSize
cudnnStatus_t
cudnnGetRNNParamsSize(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const cudnnTensorDescriptor_t xDesc,
 size_t *sizeInBytes,
 cudnnDataType_t dataType)

This function is used to query the amount of parameter space required to execute the
RNN described by rnnDesc with inputs dimensions defined by xDesc.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

rnnDesc input A previously initialized RNN descriptor.

xDesc input A fully packed tensor descriptor describing the input to one
recurrent iteration.

sizeInBytes output Minimum amount of GPU memory needed as parameter space to
be able to execute an RNN with the specified descriptor and input
tensors.

dataType input The data type of the parameters.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ The descriptor xDesc is invalid.
‣ The descriptor xDesc is not fully packed.
‣ The combination of dataType and tensor

descriptor data type is invalid.

CUDNN_STATUS_NOT_SUPPORTED The combination of the RNN descriptor and tensor
descriptors is not supported.

4.105. cudnnGetRNNLinLayerMatrixParams
cudnnStatus_t
cudnnGetRNNLinLayerMatrixParams(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int layer,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const void * w,
 const int linLayerID,
 cudnnFilterDescriptor_t linLayerMatDesc,
 void ** linLayerMat)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 118

This function is used to obtain a pointer and descriptor for the matrix parameters in
layer within the RNN described by rnnDesc with inputs dimensions defined by
xDesc.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

rnnDesc input A previously initialized RNN descriptor.

layer input The layer to query.

xDesc input A fully packed tensor descriptor describing the input to one
recurrent iteration.

wDesc input Handle to a previously initialized filter descriptor describing the
weights for the RNN.

w input Data pointer to GPU memory associated with the filter descriptor
wDesc.

linLayerID input The linear layer to obtain information about:

‣ If mode in rnnDesc was set to CUDNN_RNN_RELU or
CUDNN_RNN_TANH a value of 0 references the matrix
multiplication applied to the input from the previous layer, a
value of 1 references the matrix multiplication applied to the
recurrent input.

‣ If mode in rnnDesc was set to CUDNN_LSTM values of 0-3
reference matrix multiplications applied to the input from the
previous layer, value of 4-7 reference matrix multiplications
applied to the recurrent input.

‣ Values 0 and 4 reference the input gate.
‣ Values 1 and 5 reference the forget gate.
‣ Values 2 and 6 reference the new memory gate.
‣ Values 3 and 7 reference the output gate.

‣ If mode in rnnDesc was set to CUDNN_GRU values of 0-2
reference matrix multiplications applied to the input from the
previous layer, value of 3-5 reference matrix multiplications
applied to the recurrent input.

‣ Values 0 and 3 reference the reset gate.
‣ Values 1 and 4 reference the update gate.
‣ Values 2 and 5 reference the new memory gate.

Please refer to this section for additional details on modes.

linLayerMatDesc output Handle to a previously created filter descriptor.

linLayerMat output Data pointer to GPU memory associated with the filter descriptor
linLayerMatDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 119

Return Value Meaning

‣ The descriptor rnnDesc is invalid.
‣ One of the descriptors xDesc, wDesc,

linLayerMatDesc is invalid.
‣ One of layer, linLayerID is invalid.

4.106. cudnnGetRNNLinLayerBiasParams
cudnnStatus_t
cudnnGetRNNLinLayerBiasParams(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int layer,
 const cudnnTensorDescriptor_t xDesc,
 const cudnnFilterDescriptor_t wDesc,
 const void * w,
 const int linLayerID,
 cudnnFilterDescriptor_t linLayerBiasDesc,
 void ** linLayerBias

This function is used to obtain a pointer and descriptor for the bias parameters in layer
within the RNN described by rnnDesc with inputs dimensions defined by xDesc.

Param In/out Meaning

handle input Handle to a previously created cuDNN library descriptor.

rnnDesc input A previously initialized RNN descriptor.

layer input The layer to query.

xDesc input A fully packed tensor descriptor describing the input to one
recurrent iteration.

wDesc input Handle to a previously initialized filter descriptor describing the
weights for the RNN.

w input Data pointer to GPU memory associated with the filter descriptor
wDesc.

linLayerID input The linear layer to obtain information about:

‣ If mode in rnnDesc was set to CUDNN_RNN_RELU or
CUDNN_RNN_TANH a value of 0 references the bias applied to
the input from the previous layer, a value of 1 references the
bias applied to the recurrent input.

‣ If mode in rnnDesc was set to CUDNN_LSTM values of 0, 1, 2
and 3 reference bias applied to the input from the previous
layer, value of 4, 5, 6 and 7 reference bias applied to the
recurrent input.

‣ Values 0 and 4 reference the input gate.
‣ Values 1 and 5 reference the forget gate.
‣ Values 2 and 6 reference the new memory gate.
‣ Values 3 and 7 reference the output gate.

‣ If mode in rnnDesc was set to CUDNN_GRU values of 0, 1 and
2 reference bias applied to the input from the previous layer,
value of 3, 4 and 5 reference bias applied to the recurrent
input.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 120

Param In/out Meaning

‣ Values 0 and 3 reference the reset gate.
‣ Values 1 and 4 reference the update gate.
‣ Values 2 and 5 reference the new memory gate.

Please refer to this section for additional details on modes.

linLayerBiasDesc output Handle to a previously created filter descriptor.

linLayerBias output Data pointer to GPU memory associated with the filter descriptor
linLayerMatDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ One of the descriptors xDesc, wDesc,

linLayerBiasDesc is invalid.
‣ One of layer, linLayerID is invalid.

4.107. cudnnRNNForwardInference
cudnnStatus_t
cudnnRNNForwardInference(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t * xDesc,
 const void * x,
 const cudnnTensorDescriptor_t hxDesc,
 const void * hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void * cx,
 const cudnnFilterDescriptor_t wDesc,
 const void * w,
 const cudnnTensorDescriptor_t *yDesc,
 void * y,
 const cudnnTensorDescriptor_t hyDesc,
 void * hy,
 const cudnnTensorDescriptor_t cyDesc,
 void * cy,
 void * workspace,
 size_t workSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weights w and outputs y, hy, cy. workspace is required
for intermediate storage. This function does not store data required for training;
cudnnRNNForwardTraining should be used for that purpose.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 121

Param In/out Meaning

rnnDesc input A previously initialized RNN descriptor.

seqLength input Number of iterations to unroll over.

xDesc input An array of fully packed tensor descriptors describing the input
to each recurrent iteration. Each tensor descriptor must have the
same second dimension. The first dimension of the tensors may
decrease from element n to element n+1 but may not increase.

x input Data pointer to GPU memory associated with the tensor descriptors
in the array xDesc. The data are expected to be packed
contiguously with the first element of iteration n+1 following
directly from the last element of iteration n.

hxDesc input A fully packed tensor descriptor describing the initial hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hx input Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the
network will be initialized to zero.

cxDesc input A fully packed tensor descriptor describing the initial cell state for
LSTM networks. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cx input Data pointer to GPU memory associated with the tensor descriptor
cxDesc. If a NULL pointer is passed, the initial cell state of the
network will be initialized to zero.

wDesc input Handle to a previously initialized filter descriptor describing the
weights for the RNN.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 122

Param In/out Meaning

w input Data pointer to GPU memory associated with the filter descriptor
wDesc.

yDesc input An array of fully packed tensor descriptors describing the output
from each recurrent iteration. The second dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension
of the tensor n in xDesc.

y output Data pointer to GPU memory associated with the output tensor
descriptor yDesc. The data are expected to be packed contiguously
with the first element of iteration n+1 following directly from the
last element of iteration n.

hyDesc input A fully packed tensor descriptor describing the final hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hy output Data pointer to GPU memory associated with the tensor descriptor
hyDesc. If a NULL pointer is passed, the final hidden state of the
network will not be saved.

cyDesc input A fully packed tensor descriptor describing the final cell state for
LSTM networks. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 123

Param In/out Meaning

numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cy output Data pointer to GPU memory associated with the tensor descriptor
cyDesc. If a NULL pointer is passed, the final cell state of the
network will be not be saved.

workspace input Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes input Specifies the size in bytes of the provided workspace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc,

cxDesc, wDesc, hyDesc, cyDesc or one
of the descriptors in xDesc, yDesc is invalid.

‣ The descriptors in one of xDesc, hxDesc,
cxDesc, wDesc, yDesc, hyDesc, cyDesc
have incorrect strides or dimensions.

‣ workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED The function was unable to allocate memory.

4.108. cudnnRNNForwardTraining
cudnnStatus_t
cudnnRNNForwardTraining(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t *xDesc,
 const void * x,
 const cudnnTensorDescriptor_t hxDesc,
 const void * hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void * cx,
 const cudnnFilterDescriptor_t wDesc,
 const void * w,
 const cudnnTensorDescriptor_t *yDesc,
 void * y,
 const cudnnTensorDescriptor_t hyDesc,
 void * hy,
 const cudnnTensorDescriptor_t cyDesc,
 void * cy,
 void * workspace,
 size_t workSpaceSizeInBytes,
 void * reserveSpace,
 size_t reserveSpaceSizeInBytes)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 124

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weights w and outputs y, hy, cy. workspace is required for
intermediate storage. reserveSpace stores data required for training. The same
reserveSpace data must be used for future calls to cudnnRNNBackwardData and
cudnnRNNBackwardWeights if these execute on the same input data.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

rnnDesc input A previously initialized RNN descriptor.

xDesc input An array of fully packed tensor descriptors describing the input
to each recurrent iteration. Each tensor descriptor must have the
same second dimension. The first dimension of the tensors may
decrease from element n to element n+1 but may not increase.

seqLength input Number of iterations to unroll over.

x input Data pointer to GPU memory associated with the tensor descriptors
in the array xDesc.

hxDesc input A fully packed tensor descriptor describing the initial hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hx input Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the
network will be initialized to zero.

cxDesc input A fully packed tensor descriptor describing the initial cell state for
LSTM networks. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 125

Param In/out Meaning

cx input Data pointer to GPU memory associated with the tensor descriptor
cxDesc. If a NULL pointer is passed, the initial cell state of the
network will be initialized to zero.

wDesc input Handle to a previously initialized filter descriptor describing the
weights for the RNN.

w input Data pointer to GPU memory associated with the filter descriptor
wDesc.

yDesc input An array of fully packed tensor descriptors describing the output
from each recurrent iteration. The second dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension
of the tensor n in xDesc.

y output Data pointer to GPU memory associated with the output tensor
descriptor yDesc.

hyDesc input A fully packed tensor descriptor describing the final hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hy output Data pointer to GPU memory associated with the tensor descriptor
hyDesc. If a NULL pointer is passed, the final hidden state of the
network will not be saved.

cyDesc input A fully packed tensor descriptor describing the final cell state for
LSTM networks. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 126

Param In/out Meaning

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cy output Data pointer to GPU memory associated with the tensor descriptor
cyDesc. If a NULL pointer is passed, the final cell state of the
network will be not be saved.

workspace input Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes input Specifies the size in bytes of the provided workspace

reserveSpace input/
output

Data pointer to GPU memory to be used as a reserve space for this
call.

reserveSpaceSizeInBytes input Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc,

cxDesc, wDesc, hyDesc, cyDesc or one
of the descriptors in xDesc, yDesc is invalid.

‣ The descriptors in one of xDesc, hxDesc,
cxDesc, wDesc, yDesc, hyDesc, cyDesc
have incorrect strides or dimensions.

‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED The function was unable to allocate memory.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 127

4.109. cudnnRNNBackwardData
cudnnStatus_t
cudnnRNNBackwardData(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,
 const cudnnTensorDescriptor_t * yDesc,
 const void * y,
 const cudnnTensorDescriptor_t * dyDesc,
 const void * dy,
 const cudnnTensorDescriptor_t dhyDesc,
 const void * dhy,
 const cudnnTensorDescriptor_t dcyDesc,
 const void * dcy,
 const cudnnFilterDescriptor_t wDesc,
 const void * w,
 const cudnnTensorDescriptor_t hxDesc,
 const void * hx,
 const cudnnTensorDescriptor_t cxDesc,
 const void * cx,
 const cudnnTensorDescriptor_t * dxDesc,
 void * dx,
 const cudnnTensorDescriptor_t dhxDesc,
 void * dhx,
 const cudnnTensorDescriptor_t dcxDesc,
 void * dcx,
 void * workspace,
 size_t workSpaceSizeInBytes,
 const void * reserveSpace,
 size_t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with output
gradients dy, dhy, dhc, weights w and input gradients dx, dhx, dcx. workspace
is required for intermediate storage. The data in reserveSpace must have previously
been generated by cudnnRNNForwardTraining. The same reserveSpace data must be
used for future calls to cudnnRNNBackwardWeights if they execute on the same input
data.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

rnnDesc input A previously initialized RNN descriptor.

seqLength input Number of iterations to unroll over.

yDesc input An array of fully packed tensor descriptors describing the output
from each recurrent iteration. The second dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension
of the tensor n in dyDesc.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 128

Param In/out Meaning

y input Data pointer to GPU memory associated with the output tensor
descriptor yDesc.

dyDesc input An array of fully packed tensor descriptors describing the gradient
at the output from each recurrent iteration. The second dimension
of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the second
dimension of the tensor n in dxDesc.

dy input Data pointer to GPU memory associated with the tensor descriptors
in the array dyDesc.

dhyDesc input A fully packed tensor descriptor describing the gradients at
the final hidden state of the RNN. The third dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

dhy input Data pointer to GPU memory associated with the tensor descriptor
dhyDesc. If a NULL pointer is passed, the gradients at the final
hidden state of the network will be initialized to zero.

dcyDesc input A fully packed tensor descriptor describing the gradients at the final
cell state of the RNN. The third dimension of the tensor depends on
the direction argument passed to the cudnnSetRNNDescriptor
call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 129

Param In/out Meaning

dcy input Data pointer to GPU memory associated with the tensor descriptor
dcyDesc. If a NULL pointer is passed, the gradients at the final cell
state of the network will be initialized to zero.

wDesc input Handle to a previously initialized filter descriptor describing the
weights for the RNN.

w input Data pointer to GPU memory associated with the filter descriptor
wDesc.

hxDesc input A fully packed tensor descriptor describing the initial hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hx input Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the
network will be initialized to zero.

cxDesc input A fully packed tensor descriptor describing the initial cell state for
LSTM networks. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

cx input Data pointer to GPU memory associated with the tensor descriptor
cxDesc. If a NULL pointer is passed, the initial cell state of the
network will be initialized to zero.

dxDesc input An array of fully packed tensor descriptors describing the gradient
at the input of each recurrent iteration. Each tensor descriptor
must have the same second dimension. The first dimension of the
tensors may decrease from element n to element n+1 but may not
increase.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 130

Param In/out Meaning

dx output Data pointer to GPU memory associated with the tensor descriptors
in the array dxDesc.

dhxDesc input A fully packed tensor descriptor describing the gradient at the
initial hidden state of the RNN. The third dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

dhx output Data pointer to GPU memory associated with the tensor descriptor
dhxDesc. If a NULL pointer is passed, the gradient at the hidden
input of the network will not be set.

dcxDesc input A fully packed tensor descriptor describing the gradient at
the initial cell state of the RNN. The third dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

dcx output Data pointer to GPU memory associated with the tensor descriptor
dcxDesc. If a NULL pointer is passed, the gradient at the cell input
of the network will not be set.

workspace input Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes input Specifies the size in bytes of the provided workspace

reserveSpace input/
output

Data pointer to GPU memory to be used as a reserve space for this
call.

reserveSpaceSizeInBytes input Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 131

Return Value Meaning

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors dhxDesc,

wDesc, hxDesc, cxDesc, dcxDesc,
dhyDesc, dcyDesc or one of the descriptors
in yDesc, dxdesc, dydesc is invalid.

‣ The descriptors in one of yDesc, dxDesc,
dyDesc, dhxDesc, wDesc, hxDesc,
cxDesc, dcxDesc, dhyDesc, dcyDesc has
incorrect strides or dimensions.

‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED The function was unable to allocate memory.

4.110. cudnnRNNBackwardWeights
cudnnStatus_t
cudnnRNNBackwardWeights(cudnnHandle_t handle,
 const cudnnRNNDescriptor_t rnnDesc,
 const int seqLength,

 const cudnnTensorDescriptor_t * xDesc,
 const void * x,
 const cudnnTensorDescriptor_t hxDesc,
 const void * hx,
 const cudnnTensorDescriptor_t * yDesc,
 const void * y,
 const void * workspace,
 size_t workSpaceSizeInBytes,
 const cudnnFilterDescriptor_t dwDesc,
 void * dw,
 const void * reserveSpace,
 size_t reserveSpaceSizeInBytes)

This routine accumulates weight gradients dw from the recurrent neural network
described by rnnDesc with inputs x, hx, and outputs y. The mode of operation in this
case is additive, the weight gradients calculated will be added to those already existing
in dw. workspace is required for intermediate storage. The data in reserveSpace must
have previously been generated by cudnnRNNBackwardData.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

rnnDesc input A previously initialized RNN descriptor.

seqLength input Number of iterations to unroll over.

xDesc input An array of fully packed tensor descriptors describing the input
to each recurrent iteration. Each tensor descriptor must have the
same second dimension. The first dimension of the tensors may
decrease from element n to element n+1 but may not increase.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 132

Param In/out Meaning

x input Data pointer to GPU memory associated with the tensor descriptors
in the array xDesc.

hxDesc input A fully packed tensor descriptor describing the initial hidden state
of the RNN. The third dimension of the tensor depends on the
direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the third
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the third dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the
tensors described in xDesc. The first dimension must match the
numLayers argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc. The tensor must be fully packed.

hx input Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the
network will be initialized to zero.

yDesc input An array of fully packed tensor descriptors describing the output
from each recurrent iteration. The second dimension of the
tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

‣ If direction is CUDNN_UNIDIRECTIONAL the second
dimension should match the hiddenSize argument passed to
cudnnSetRNNDescriptor.

‣ If direction is CUDNN_BIDIRECTIONAL the second dimension
should match double the hiddenSize argument passed to
cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension
of the tensor n in dyDesc.

y input Data pointer to GPU memory associated with the output tensor
descriptor yDesc.

workspace input Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes input Specifies the size in bytes of the provided workspace

dwDesc input Handle to a previously initialized filter descriptor describing the
gradients of the weights for the RNN.

dw input/
output

Data pointer to GPU memory associated with the filter descriptor
dwDesc.

reserveSpace input Data pointer to GPU memory to be used as a reserve space for this
call.

reserveSpaceSizeInBytes input Specifies the size in bytes of the provided reserveSpace

The possible error values returned by this function and their meanings are listed below.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 133

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The descriptor rnnDesc is invalid.
‣ At least one of the descriptors hxDesc,

dwDesc or one of the descriptors in xDesc,
yDesc is invalid.

‣ The descriptors in one of xDesc, hxDesc,
yDesc, dwDesc has incorrect strides or
dimensions.

‣ workSpaceSizeInBytes is too small.
‣ reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED The function was unable to allocate memory.

4.111. cudnnCreateDropoutDescriptor
cudnnStatus_t cudnnCreateDropoutDescriptor(cudnnRNNDescriptor_t * rnnDesc)

This function creates a generic dropout descriptor object by allocating the memory
needed to hold its opaque structure.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.112. cudnnDestroyDropoutDescriptor
cudnnStatus_t cudnnDestroyDropoutDescriptor(cudnnDropoutDescriptor_t rnnDesc)

This function destroys a previously created dropout descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.113. cudnnDropoutGetStatesSize
cudnnStatus_t
cudnnDropoutGetStatesSize(cudnnHandle_t handle,
 size_t * sizeInBytes);

This function is used to query the amount of space required to store the states of the
random number generators used by cudnnDropoutForward function.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 134

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

sizeInBytes output Amount of GPU memory needed to store random generator states.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

4.114. cudnnDropoutGetReserveSpaceSize
cudnnStatus_t
cudnnDropoutGetReserveSpaceSize(cudnnTensorDescriptor_t xDesc,
 size_t * sizeInBytes);

This function is used to query the amount of reserve needed to run dropout with the
input dimensions given by xDesc. The same reserve space is expected to be passed to
cudnnDropoutForward and cudnnDropoutBackward, and its contents is expected
to remain unchanged between cudnnDropoutForward and cudnnDropoutBackward
calls.

Param In/out Meaning

xDesc input Handle to a previously initialized tensor descriptor, describing input
to a dropout operation.

sizeInBytes output Amount of GPU memory needed as reserve space to be able to run
dropout with an input tensor descriptor specified by xDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The query was successful.

4.115. cudnnSetDropoutDescriptor
cudnnStatus_t
cudnnSetDropoutDescriptor(cudnnDropoutDescriptor_t dropoutDesc,
 cudnnHandle_t handle,
 float dropout,
 void * states,
 size_t stateSizeInBytes,
 unsigned long long seed)

This function initializes a previously created dropout descriptor object. If states
argument is equal to NULL, random number generator states won't be initialized, and
only dropout value will be set. No other function should be writing to the memory

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 135

pointed at by states argument while this function is running. The user is expected not
to change memory pointed at by states for the duration of the computation.

Param In/out Meaning

dropoutDesc input/
output

Previously created dropout descriptor object.

handle input Handle to a previously created cuDNN context.

dropout input The probability with which the value from input would be
propagated through the dropout layer.

states output Pointer to user-allocated GPU memory that will hold random
number generator states.

sizeInBytes input Specifies size in bytes of the provided memory for the states

seed input Seed used to initialize random number generator states.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_INVALID_VALUE sizeInBytes is less than the value returned by
cudnnDropoutGetStatesSize.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

4.116. cudnnDropoutForward
cudnnStatus_t
cudnnDropoutForward(cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t xdesc,
 const void * x,
 const cudnnTensorDescriptor_t ydesc,
 void * y,
 void * reserveSpace,
 size_t reserveSpaceSizeInBytes)

This function performs forward dropout operation over x returning results in
y. If dropout was used as a parameter to cudnnSetDropoutDescriptor, the
approximately dropout fraction of x values will be replaces by 0, and the rest will
be scaled by 1/(1-dropout) This function should not be running concurrently with
another cudnnDropoutForward function using the same states.

Better performance is obtained for fully packed tensors

Should not be called during inference

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 136

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

dropoutDesc input Previously created dropout descriptor object.

xDesc input Handle to a previously initialized tensor descriptor.

x input Pointer to data of the tensor described by the xDesc descriptor.

yDesc input Handle to a previously initialized tensor descriptor.

y output Pointer to data of the tensor described by the yDesc descriptor.

reserveSpace output Pointer to user-allocated GPU memory used by this function. It is
expected that contents of reserveSpace doe not change between
cudnnDropoutForward and cudnnDropoutBackward calls.

reserveSpaceSizeInBytes input Specifies size in bytes of the provided memory for the reserve space

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The number of elements of input tensor and
output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides of the input tensor and output
tensors differ and in-place operation is used
(i.e., x and y pointers are equal).

‣ The provided reserveSpaceSizeInBytes
is less then the value returned by
cudnnDropoutGetReserveSpaceSize

‣ cudnnSetDropoutDescriptor has not been
called on dropoutDesc with the non-NULL
states argument

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.117. cudnnDropoutBackward
cudnnStatus_t
cudnnDropoutBackward(cudnnHandle_t handle,
 const cudnnDropoutDescriptor_t dropoutDesc,
 const cudnnTensorDescriptor_t dydesc,
 const void * dy,
 const cudnnTensorDescriptor_t dxdesc,
 void * dx,
 void * reserveSpace,
 size_t reserveSpaceSizeInBytes)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 137

This function performs backward dropout operation over dy returning results in dx.
If during forward dropout operation value from x was propagated to y then during
backward operation value from dy will be propagated to dx, otherwise, dx value will be
set to 0.

Better performance is obtained for fully packed tensors

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

dropoutDesc input Previously created dropout descriptor object.

dyDesc input Handle to a previously initialized tensor descriptor.

dy input Pointer to data of the tensor described by the dyDesc descriptor.

dxDesc input Handle to a previously initialized tensor descriptor.

dx output Pointer to data of the tensor described by the dxDesc descriptor.

reserveSpace input Pointer to user-allocated GPU memory used by this function. It
is expected that reserveSpace was populated during a call to
cudnnDropoutForward and has not been changed.

reserveSpaceSizeInBytes input Specifies size in bytes of the provided memory for the reserve space

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The number of elements of input tensor and
output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

‣ The strides of the input tensor and output
tensors differ and in-place operation is used
(i.e., x and y pointers are equal).

‣ The provided reserveSpaceSizeInBytes
is less then the value returned by
cudnnDropoutGetReserveSpaceSize

‣ cudnnSetDropoutDescriptor has not been
called on dropoutDesc with the non-NULL
states argument

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 138

4.118. cudnnCreateSpatialTransformerDescriptor
cudnnStatus_t
cudnnCreateSpatialTransformerDescriptor(
 cudnnSpatialTransformerDescriptor_t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the
memory needed to hold its opaque structure.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.119. cudnnDestroySpatialTransformerDescriptor
cudnnStatus_t
cudnnDestroySpatialTransformerDescriptor(
 cudnnSpatialTransformerDescriptor_t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.120. cudnnSetSpatialTransformerNdDescriptor
cudnnStatus_t
cudnnSetSpatialTransformerNdDescriptor(
 cudnnSpatialTransformerDescriptor_t stDesc,
 cudnnSamplerType_t samplerType,
 cudnnDataType_t dataType,
 const int nbDims,
 const int dimA[]);

This function initializes a previously created generic spatial transformer descriptor
object.

Param In/out Meaning

stDesc input/
output

Previously created spatial transformer descriptor object.

samplerType input Enumerant to specify the sampler type.

dataType input Data type.

nbDims input Dimension of the transformed tensor.

dimA input Array of dimension nbDims containing the size of the transformed
tensor for every dimension.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 139

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ Either stDesc or dimA is NULL.
‣ Either dataType or samplerType has an

invalid enumerant value

4.121. cudnnSpatialTfGridGeneratorForward
cudnnStatus_t
cudnnSpatialTfGridGeneratorForward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void* theta,
 void* grid)

This function generates a grid of coordinates in the input tensor corresponding to each
pixel from the output tensor.

Only 2d transformation is supported.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

stDesc input Previously created spatial transformer descriptor object.

theta input Affine transformation matrix. It should be of size n*2*3 for a 2d
transformation, where n is the number of images specified in
stDesc.

grid output A grid of coordinates. It is of size n*h*w*2 for a 2d transformation,
where n, h, w is specified in stDesc. In the 4th dimension, the first
coordinate is x, and the second coordinate is y.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters grid, theta is NULL.

CUDNN_STATUS_NOT_SUPPORTED The dimension of transformed tensor specified in
stDesc > 4.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 140

4.122. cudnnSpatialTfGridGeneratorBackward
cudnnStatus_t
cudnnSpatialTfGridGeneratorBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void* dgrid,
 void* dtheta)

This function computes the gradient of a grid generation operation.

Only 2d transformation is supported.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

stDesc input Previously created spatial transformer descriptor object.

dgrid input Data pointer to GPU memory contains the input differential data.

dtheta output Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters dgrid, dtheta is

NULL.

CUDNN_STATUS_NOT_SUPPORTED The dimension of transformed tensor specified in
stDesc > 4.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.123. cudnnSpatialTfSamplerForward
cudnnStatus_t
cudnnSpatialTfSamplerForward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void* alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void* x,
 const void* grid,
 const void* beta,
 cudnnTensorDescriptor_t yDesc,
 void* y)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 141

This function performs a sampler operation and generates the output tensor using the
grid given by the grid generator.

Only 2d transformation is supported.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

stDesc input Previously created spatial transformer descriptor object.

alpha,beta input Pointers to scaling factors (in host memory) used to blend the
source value with prior value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to
this section for additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor
xDesc.

grid input A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

yDesc input Handle to the previously initialized output tensor descriptor.

y output Data pointer to GPU memory associated with the output tensor
descriptor yDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters x, y, grid is NULL.

CUDNN_STATUS_NOT_SUPPORTED The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 142

4.124. cudnnSpatialTfSamplerBackward
cudnnStatus_t
cudnnSpatialTfSamplerBackward(
 cudnnHandle_t handle,
 const cudnnSpatialTransformerDescriptor_t stDesc,
 const void* alpha,
 const cudnnTensorDescriptor_t xDesc,
 const void* x,
 const void* beta,
 const cudnnTensorDescriptor_t dxDesc,
 void* dx,
 const void* alphaDgrid,
 const cudnnTensorDescriptor_t dyDesc,
 const void* dy,
 const void* grid,
 const void* betaDgrid,
 void* dgrid)

This function computes the gradient of a sampling operation.

Only 2d transformation is supported.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

stDesc input Previously created spatial transformer descriptor object.

alpha,beta input Pointers to scaling factors (in host memory) used to blend the
source value with prior value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to
this section for additional details.

xDesc input Handle to the previously initialized input tensor descriptor.

x input Data pointer to GPU memory associated with the tensor descriptor
xDesc.

dxDesc input Handle to the previously initialized output differential tensor
descriptor.

dx output Data pointer to GPU memory associated with the output tensor
descriptor dxDesc.

alphaDgrid,betaDgrid input Pointers to scaling factors (in host memory) used to blend the
gradient outputs dgrid with prior value in the destination pointer as
follows: dstValue = alpha[0]*srcValue + beta[0]*priorDstValue. Please
refer to this section for additional details.

dyDesc input Handle to the previously initialized input differential tensor
descriptor.

dy input Data pointer to GPU memory associated with the tensor descriptor
dyDesc.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 143

Param In/out Meaning

grid input A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

dgrid output Data pointer to GPU memory contains the output differential data.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The call was successful.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ handle is NULL.
‣ One of the parameters

x,dx,y,dy,grid,dgrid is NULL.
‣ The dimension of dy differs from those

specified in stDesc

CUDNN_STATUS_NOT_SUPPORTED The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 144

Chapter 5.
ACKNOWLEDGMENTS

Some of the cuDNN library routines were derived from code developed by others and
are subject to the following:

5.1. University of Tennessee
Copyright (c) 2010 The University of Tennessee.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer listed in this license in the documentation and/or
 other materials provided with the distribution.
 * Neither the name of the copyright holders nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Acknowledgments

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 145

5.2. University of California, Berkeley
COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)
All rights reserved.

All other contributions:
Copyright (c) 2014, the respective contributors
All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.

LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.

Acknowledgments

www.nvidia.com
cuDNN Library DU-06702-001_v5.1 | 146

5.3. Facebook AI Research, New York
Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

 * Neither the name Facebook nor the names of its contributors may be used to
 endorse or promote products derived from this software without specific
 prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights

"Software" means fbcunn software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive,
irrevocable (subject to the termination provision below) license under any
rights in any patent claims owned by Facebook, to make, have made, use, sell,
offer to sell, import, and otherwise transfer the Software. For avoidance of
doubt, no license is granted under Facebook���s rights in any patent claims that
are infringed by (i) modifications to the Software made by you or a third party,
or (ii) the Software in combination with any software or other technology
provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice,
for anyone that makes any claim (including by filing any lawsuit, assertion or
other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software, product or
service of Facebook or any of its subsidiaries or affiliates, whether or not
such claim is related to the Software, or (iii) by any party relating to the
Software; or (b) that any right in any patent claim of Facebook is invalid or
unenforceable.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2016 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Introduction
	General Description
	2.1. Programming Model
	2.2. Notation
	2.3. Tensor Descriptor
	2.3.1. WXYZ Tensor Descriptor
	2.3.2. 4-D Tensor Descriptor
	2.3.3. 5-D Tensor Description
	2.3.4. Fully-packed tensors
	2.3.5. Partially-packed tensors
	2.3.6. Spatially packed tensors
	2.3.7. Overlapping tensors

	2.4. Thread Safety
	2.5. Reproducibility (determinism)
	2.6. Scaling parameters alpha and beta
	2.7. GPU and driver requirements
	2.8. Backward compatibility and deprecation policy

	cuDNN Datatypes Reference
	3.1. cudnnHandle_t
	3.2. cudnnStatus_t
	3.3. cudnnTensorDescriptor_t
	3.4. cudnnFilterDescriptor_t
	3.5. cudnnConvolutionDescriptor_t
	3.6. cudnnNanPropagation_t
	3.7. cudnnActivationDescriptor_t
	3.8. cudnnPoolingDescriptor_t
	3.9. cudnnOpTensorOp_t
	3.10. cudnnOpTensorDescriptor_t
	3.11. cudnnDataType_t
	3.12. cudnnTensorFormat_t
	3.13. cudnnConvolutionMode_t
	3.14. cudnnConvolutionFwdPreference_t
	3.15. cudnnConvolutionFwdAlgo_t
	3.16. cudnnConvolutionFwdAlgoPerf_t
	3.17. cudnnConvolutionBwdFilterPreference_t
	3.18. cudnnConvolutionBwdFilterAlgo_t
	3.19. cudnnConvolutionBwdFilterAlgoPerf_t
	3.20. cudnnConvolutionBwdDataPreference_t
	3.21. cudnnConvolutionBwdDataAlgo_t
	3.22. cudnnConvolutionBwdDataAlgoPerf_t
	3.23. cudnnSoftmaxAlgorithm_t
	3.24. cudnnSoftmaxMode_t
	3.25. cudnnPoolingMode_t
	3.26. cudnnActivationMode_t
	3.27. cudnnLRNMode_t
	3.28. cudnnDivNormMode_t
	3.29. cudnnBatchNormMode_t
	3.30. cudnnRNNDescriptor_t
	3.31. cudnnRNNMode_t
	3.32. cudnnDirectionMode_t
	3.33. cudnnRNNInputMode_t
	3.34. cudnnDropoutDescriptor_t
	3.35. cudnnSpatialTransformerDescriptor_t
	3.36. cudnnSamplerType_t

	cuDNN API Reference
	4.1. cudnnGetVersion
	4.2. cudnnGetErrorString
	4.3. cudnnCreate
	4.4. cudnnDestroy
	4.5. cudnnSetStream
	4.6. cudnnGetStream
	4.7. cudnnCreateTensorDescriptor
	4.8. cudnnSetTensor4dDescriptor
	4.9. cudnnSetTensor4dDescriptorEx
	4.10. cudnnGetTensor4dDescriptor
	4.11. cudnnSetTensorNdDescriptor
	4.12. cudnnGetTensorNdDescriptor
	4.13. cudnnDestroyTensorDescriptor
	4.14. cudnnTransformTensor
	4.15. cudnnAddTensor
	4.16. cudnnOpTensor
	4.17. cudnnSetTensor
	4.18. cudnnScaleTensor
	4.19. cudnnCreateFilterDescriptor
	4.20. cudnnSetFilter4dDescriptor
	4.21. cudnnGetFilter4dDescriptor
	4.22. cudnnSetFilter4dDescriptor_v3
	4.23. cudnnGetFilter4dDescriptor_v3
	4.24. cudnnSetFilter4dDescriptor_v4
	4.25. cudnnGetFilter4dDescriptor_v4
	4.26. cudnnSetFilterNdDescriptor
	4.27. cudnnGetFilterNdDescriptor
	4.28. cudnnSetFilterNdDescriptor_v3
	4.29. cudnnGetFilterNdDescriptor_v3
	4.30. cudnnSetFilterNdDescriptor_v4
	4.31. cudnnGetFilterNdDescriptor_v4
	4.32. cudnnDestroyFilterDescriptor
	4.33. cudnnCreateConvolutionDescriptor
	4.34. cudnnSetConvolution2dDescriptor
	4.35. cudnnGetConvolution2dDescriptor
	4.36. cudnnGetConvolution2dForwardOutputDim
	4.37. cudnnSetConvolutionNdDescriptor
	4.38. cudnnGetConvolutionNdDescriptor
	4.39. cudnnGetConvolutionNdForwardOutputDim
	4.40. cudnnDestroyConvolutionDescriptor
	4.41. cudnnFindConvolutionForwardAlgorithm
	4.42. cudnnFindConvolutionForwardAlgorithmEx
	4.43. cudnnGetConvolutionForwardAlgorithm
	4.44. cudnnGetConvolutionForwardWorkspaceSize
	4.45. cudnnConvolutionForward
	4.46. cudnnConvolutionBackwardBias
	4.47. cudnnFindConvolutionBackwardFilterAlgorithm
	4.48. cudnnFindConvolutionBackwardFilterAlgorithmEx
	4.49. cudnnGetConvolutionBackwardFilterAlgorithm
	4.50. cudnnGetConvolutionBackwardFilterWorkspaceSize
	4.51. cudnnConvolutionBackwardFilter
	4.52. cudnnFindConvolutionBackwardDataAlgorithm
	4.53. cudnnFindConvolutionBackwardDataAlgorithmEx
	4.54. cudnnGetConvolutionBackwardDataAlgorithm
	4.55. cudnnGetConvolutionBackwardDataWorkspaceSize
	4.56. cudnnConvolutionBackwardData
	4.57. cudnnSoftmaxForward
	4.58. cudnnSoftmaxBackward
	4.59. cudnnCreatePoolingDescriptor
	4.60. cudnnSetPooling2dDescriptor
	4.61. cudnnGetPooling2dDescriptor
	4.62. cudnnSetPoolingNdDescriptor
	4.63. cudnnGetPoolingNdDescriptor
	4.64. cudnnSetPooling2dDescriptor_v3
	4.65. cudnnGetPooling2dDescriptor_v3
	4.66. cudnnSetPoolingNdDescriptor_v3
	4.67. cudnnGetPoolingNdDescriptor_v3
	4.68. cudnnSetPooling2dDescriptor_v4
	4.69. cudnnGetPooling2dDescriptor_v4
	4.70. cudnnSetPoolingNdDescriptor_v4
	4.71. cudnnGetPoolingNdDescriptor_v4
	4.72. cudnnDestroyPoolingDescriptor
	4.73. cudnnGetPooling2dForwardOutputDim
	4.74. cudnnGetPoolingNdForwardOutputDim
	4.75. cudnnPoolingForward
	4.76. cudnnPoolingBackward
	4.77. cudnnActivationForward
	4.78. cudnnActivationBackward
	4.79. cudnnCreateActivationDescriptor
	4.80. cudnnSetActivationDescriptor
	4.81. cudnnGetActivationDescriptor
	4.82. cudnnDestroyActivationDescriptor
	4.83. cudnnActivationForward_v3
	4.84. cudnnActivationBackward_v3
	4.85. cudnnActivationForward_v4
	4.86. cudnnActivationBackward_v4
	4.87. cudnnCreateLRNDescriptor
	4.88. cudnnSetLRNDescriptor
	4.89. cudnnGetLRNDescriptor
	4.90. cudnnDestroyLRNDescriptor
	4.91. cudnnLRNCrossChannelForward
	4.92. cudnnLRNCrossChannelBackward
	4.93. cudnnDivisiveNormalizationForward
	4.94. cudnnDivisiveNormalizationBackward
	4.95. cudnnBatchNormalizationForwardInference
	4.96. cudnnBatchNormalizationForwardTraining
	4.97. cudnnBatchNormalizationBackward
	4.98. cudnnDeriveBNTensorDescriptor
	4.99. cudnnCreateRNNDescriptor
	4.100. cudnnDestroyRNNDescriptor
	4.101. cudnnSetRNNDescriptor
	4.102. cudnnGetRNNWorkspaceSize
	4.103. cudnnGetRNNTrainingReserveSize
	4.104. cudnnGetRNNParamsSize
	4.105. cudnnGetRNNLinLayerMatrixParams
	4.106. cudnnGetRNNLinLayerBiasParams
	4.107. cudnnRNNForwardInference
	4.108. cudnnRNNForwardTraining
	4.109. cudnnRNNBackwardData
	4.110. cudnnRNNBackwardWeights
	4.111. cudnnCreateDropoutDescriptor
	4.112. cudnnDestroyDropoutDescriptor
	4.113. cudnnDropoutGetStatesSize
	4.114. cudnnDropoutGetReserveSpaceSize
	4.115. cudnnSetDropoutDescriptor
	4.116. cudnnDropoutForward
	4.117. cudnnDropoutBackward
	4.118. cudnnCreateSpatialTransformerDescriptor
	4.119. cudnnDestroySpatialTransformerDescriptor
	4.120. cudnnSetSpatialTransformerNdDescriptor
	4.121. cudnnSpatialTfGridGeneratorForward
	4.122. cudnnSpatialTfGridGeneratorBackward
	4.123. cudnnSpatialTfSamplerForward
	4.124. cudnnSpatialTfSamplerBackward

	Acknowledgments
	5.1. University of Tennessee
	5.2. University of California, Berkeley
	5.3. Facebook AI Research, New York

