O'REILLY"

Early
Release

RAW &
UNEDITED

Compliments of

Z) HOPSWORKS

Building

Machine Learn
Systems witha
Feature Store

Batch, Real-Time, and LLM Systems

Jim Dowling

#» HOPSWORKS

Machine Learning Platform
& Feature Store

Empowering scale, speed, & real-
time Al. With robust data layers
designed for extreme performance
requirements.

£ HOPSWORKS

]

eeeeee

hopsworks.ai /\

https://www.hopsworks.ai/

Building Machine Learning

Systems with a Feature Store
Batch, Real-Time, and LLM Systems

With Early Release ebooks, you get books in their earliest
form—the author’s raw and unedited content as they write—
so you can take advantage of these technologies long before
the official release of these titles.

Jim Dowling

O'REILLY"

Building Machine Learning Systems with a Feature Store
by Jim Dowling

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Nicole Butterfield Interior Designer: David Futato
Development Editor: Gary O’Brien Cover Designer: Karen Montgomery
Production Editor: Clare Laylock lllustrator: Kate Dullea

July 2025: First Edition

Revision History for the Early Release
2024-02-08: First Release
2024-04-09: Second Release
2024-06-24: Third Release
2024-07-25: Fourth Release
2024-10-28: Fifth Release
2025-04-14: Sixth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098165239 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Machine Learning Systems
with a Feature Store, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Hopsworks. See our statement of editorial inde-
pendence.

978-1-098-16517-8
[TO COME]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098165239
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Brief Table of Contents (Not Yet Final)
Preface
Introduction

1.

Table of Contents

Building Machine Learning Systems.............ccoovviiiiiiiiiiiiiennn.

The Evolution of Machine Learning Systems
The Anatomy of a Machine Learning System
Types of Machine Learning
Data Sources
Incremental Datasets
What is a ML Pipeline ?
Principles of MLOps
Machine Learning Systems with a Feature Store
Three Types of ML System with a Feature Store
ML Frameworks and ML Infrastructure used in this book
Summary

. Machine Learning Pipelines...........ccovviiiiiiiiiiiiniiiiiennnn.

Building ML Systems with ML Pipelines
Minimal Viable Prediction Service (MVPS)
Wanted: Modular Code for Machine Learning Pipelines

A Taxonomy for Data Transformations in ML Pipelines
Feature Types and Model-Dependent Transformations
Reusable Features with Model-Independent Transformations
Real-Time Features with On-Demand Transformations
The ML Transformation Taxonomy and ML Pipelines

49
50
50
54
58
59
61
61
62

Feature Pipelines 63

Training Pipelines 66
Inference Pipelines 69
Titanic survival as a ML System built with ML pipelines 71
Summary 75
3. Your Friendly Neighborhood Air Quality Forecasting Service...................... 77
ML System Overview 79
Air Quality Data 80
Working with Hopsworks 84
Exploratory Dataset Analysis 85
Air Quality Data 85
Weather Data 88
Creating and Backfilling Feature Groups 89
Data Validation 90
Feature Pipeline 90
Training Pipeline 92
Batch Inference Pipeline 95
Running the Pipelines 96
Scheduling the Pipelines as a GitHub Action 97
Building the Dashboard as a GitHub Page 100
Function Calling with LLMs 101
Running the Function Calling Notebook 104
Summary 105
4. Fature STOreS.vveeeeet ittt i e 107
A Feature Store for Fraud Prediction 108
Brief History of Feature Stores 109
The Anatomy of a Feature Store 110
When Do You Need a Feature Store? 113
For Context and History in Real-Time AI Systems 113
For Time-Series Data 113
For Improved Collaboration with the FTT Pipeline Architecture 115
For Governance of AI Systems 116
For Discovery and Reuse of AT Assets 116
For Elimination of Offline-Online Feature Skew 116
For Centralizing your Data for Al in a single Platform 117
Feature Groups 118
Feature Groups store untransformed feature data 120
Feature Definitions and Feature Groups 121
Writing to Feature Groups 121
Data Models for Feature Groups 123

vi | Tableof Contents

Dimension modeling with a Credit Card Data Mart

Real-Time Credit Card Fraud Detection AI System
Feature Store Data Model for Inference

Online Inference

Batch Inference
Reading Feature Data with a Feature View

Point-in-Time Correct Training Data with Feature Views

Feature Vectors for Online Inference with a Feature View
Conclusions

. Hopsworks Feature Store.ovvviieiiiiiii ittt i e
Hopsworks Projects

Storing Files in a Project

Access Control within Projects

Access Control Across Projects
Feature Groups

Versioning

Online Store

Offline Store (Lakehouse Tables)

Change Data Capture (CDC) for Feature Groups
Feature Views

Feature Selection

Model-Dependent Transformations

Creating Feature Views

Training Data as either DataFrames or Files

Batch Inference Data

Online Inference
Faster Queries for Feature Data

Summary

. Model-Independent Transformations.cccooiiiiiiiiiiieiennnen.
Source Code Organization
Feature Pipelines
Data Transformations for DataFrames
Row-Size Preserving Transformations
Row- and Column-Size Reducing Transformations
Row-/Column-Size Increasing Transformations
Join Transformations
DAG of Feature Functions
Lazy DataFrames
Vectorized Compute, Multi-Core, and Arrow
Data Types

125
129
133
133
134
135
136
138
138

139
140
140
141
142
144
147
153
156
158
159
159
161
161
162
165
166
167
169

171
172
174
177
179
180
182
183
184
185
186
190

Table of Contents

vii

Credit Card Fraud Features

Composition of Transformations

Summary

Exercises

193
196
197
197

viii

Table of Contents

Brief Table of Contents (Not Yet Final)

Preface

Introduction

Chapter 1: Building Machine Learning Systems

Chapter 2: Machine Learning Pipelines

Chapter 3: Your Friendly Neighborhood Air Quality Forecasting Service (available)
Chapter 4: Feature Stores (available)

Chapter 5: Hopsworks Feature Store (available)

Chapter 6: Model-Independent Transformations (available)
Chapter 7: Model-Dependent Transformations (unavailable)
Chapter 8: Batch Feature Pipelines (unavailable)

Chapter 9: Streaming Feature Pipelines (unavailable)
Chapter 10: Training Pipelines (unavailable)

Chapter 11: Inference Pipelines (unavailable)

Chapter 12: MLOps (unavailable)

Chapter 13: Feature and Model Monitoring (unavailable)
Chapter 14: Vector Databases (unavailable)

Chapter 15: Case Study: Personalized Recommendations (unavailable)

Preface

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the preface of the final book. The GitHub repo can be found at https://
github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

This book is the coursebook I would like to have had for 1D2223, “Scalable Machine
Learning and Deep Learning’, a course I developed and taught at KTH Stockholm.
The course was, I believe, the first university course that taught students to build
complete machine learning (ML) systems using non-static data sources. By the end of
the course, the students built their own ML system they developed (around 2 weeks
work, in groups of 2) that included:

1. A unique data source that generated new data at some cadence,
2. A prediction problem they would solve with ML using the data source, and

3. A ML system that creates features from the data source, trains a model, makes
predictions on new data, visualizes the ML system output with a user interface
(interactive or dashboard), and a UI to monitor the performance of their ML sys-
tem.

Charles Fyre, developer of the Full Stack Deep Learning course, said the following of
1D2223:

Xi

https://github.com/featurestorebook/mlfs-book
https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com

In 2017, having a shared pipeline for training and prediction data that updated auto-
matically and made models available as a UI and an API was a groundbreaking stack at
Uber. Now it’s stanard part of a well-done (ID2223) project.

Some of the examples of ML systems built in ID2223 are shown in Table P-1 below.
The ML systems built were a mix of ML systems built with deep learning and LLMs,
and more classical ML systems built with decision trees, such as XGBoost.

Table P-1. Example Machine Learning Systems

Prediction Problem Data Source(s)

Air Quality Prediction Air quality data, scraped from public sensors and public weather data

Water Height Prediction Water height data published from sensor readings along with weather data

Football Score Prediction Football score history and fantasy foothall data about players and teams

Electricity Demand Prediction Public electricity demand data, projected demand data, and weather data

Electricity Price Prediction Public electricity price data, projected price data, and weather data

Game of Thrones Tours Review Tripadvisor reviews and responses

Response Generator

Bitcoin price prediction Twitter bitcoin sentiment using a Twitter APl and a list of the 10,000 top crypto
accounts on Twitter

Overview of this book’s mission

The goal of this book is to introduce ML systems built with feature stores, and how to
build the pipelines (programs with well-defined inputs and outputs) for ML systems
while following MLOps best practices for the incremental development and improve-
ment of your ML systems. We will deep dive into feature stores to help you under-
stand how they can help manage your ML data for training models and making
predictions. You will acquire some practical skills on how to create and update reusa-
ble features with model-independent transformations, as well as how to select, join,
and filter features to create point-in-time correct training data for models. You will
learn how to implement model-dependent feature transformations that are applied
consistently in both training and serving (such as text encoding for large language
models (LLMs)). You will learn how to build real-time ML systems with the help of
the feature store that provides history and context to (stateless) online applications.
You will also learn how to automate, test, and orchestrate ML pipelines. We will apply
the skills you acquire to build three different types of ML system: batch ML systems
(that make predictions on a schedule), real-time ML systems (that run 24x7 and
respond to requests with predictions), and LLM systems (that are personalized using
fined-tuning and retrieval augmented generation (RAG)). Finally, you will learn how
to govern and manage your ML assets to provide transparency and maintain compli-
ance for your ML system.

xii | Preface

Target Reader of this Book

The ideal reader has a role in implementing a data science process and is interested in
operationalizing data science. Data engineers, data scientists, and machine learning
engineers will enjoy the exercises that will enable them to build the basic components
of a feature store.

Chief Digital Officers, Chief Digital Transformation Officers, and CTO’s will learn
how ML infrastructure, including feature stores, model registries, and model serving
infrastructure, enables the transition of machine learning models out of the lab and
into the enterprise. Readers should have a basic understanding of Python, databases,
and machine learning. Those intending to understand and perform the lab exercises
must have Python skills and basic Jupyter notebook familiarity.

The architectural skills you will learn in this book include:

« How to structure a ML system (batch, real-time, or LLM) as modular ML pipe-
lines that can be independently developed, tested, and operated;

« How to ensure the consistency of feature data between offline training and online
operations;

« How to govern data in a feature store and promote collaboration between teams
with a feature store;

« How to follow MLOps principles of automated testing, versioning, and monitor-
ing of features and models.

The modeling skills you will learn in this book include:

o How to train ML models from (time-series) tabular data in a feature store;
« How to personalize LLMs using fine-tuning and RAG;

« How to validate models using evaluation data from a feature store.
The ML engineering skills you will learn in this book include:

» How to identify and develop reusable model-independent features;
« How to identify and develop model-dependent features;

« How to identify and develop on-demand (real-time) features;

o How to validate feature data;

o How to test feature functions;

+ And how to test ML pipelines.

The operational skills you will acquire in this book include:

Preface | xiii

« How to schedule feature pipelines and batch inference pipelines;
« How to deploy real-time models, connected to a feature store;
« How to log and monitor features and models with a feature store;

« How to develop user-interfaces to ML systems.

xiv | Preface

Introduction

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the introduction of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Companies of all stages of maturity, size, and risk adversity are adopting machine
learning (ML). However, many of these companies are not actually generating value
from ML. In order to generate value from ML, you need to make the leap from train-
ing ML models to building and operating ML systems. Training a ML model and
building a ML system are two very different activities. If training a model was akin to
building a one-off airplane, then building a ML system is more like building the air-
craft factory, the airports, the airline, and attendant infrastructure needed to provide
an efficient air travel service. The Wright brothers may have built the first heavier-
than air airplane in 1903, but it wasn’t until 1922 that the first commercial airport was
opened. And it took until the 1930s until airports started to be built out around the
world.

In the early 2010s, when both machine learning and deep learning exploded in popu-
larity, many companies became what are now known as “hyper-scale AI companies’,
as they built the first ML systems using massive computational and data storage
infrastructure. ML systems such as Google translate, TikToK’s video recommendation
engine, Uber’s taxi service, and ChatGPT were trained using vast amounts of data

XV

https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com

(petabytes using thousands of hard drives) on compute clusters with 1000s of servers.
Deep learning models additionally need hardware accelerators (often graphical pro-
cessing units (GPUs)) to train models, further increasing the barrier to entry for most
organizations. After the models are trained, vast operational systems (including
GPUs) are needed to manage the data and users so that the models can make predic-
tions for hundreds or thousands of simultaneous users.

These ML systems, built by the hyperscale AI companies, continue to generate enor-
mous amounts of value for both their customers and owners. Fortunately, the Al
community has developed a culture of openness, and many of these companies have
shared the details about how they built and operated these systems. The first com-
pany to do so in detail was Uber, who in September 2017, presented its platform for
building and operating ML systems, Michelangelo. Michelangelo was a new kind of
platform that managed the data and models for ML as well as the feature engineering
programs that create the data for both training and predictions. They called Michel-
angelos data platform a feature store - a data platform that manages the feature data
(the input data to ML models) throughout the ML lifecycle—from training models to
making predictions with models. Now, in 2024, it is no exaggeration to say that all
Enterprises that build and run operational ML applications at scale use a feature store
to manage their data for AI. Michelangelo was more than a feature store, though, as it
also includes support for storing and serving models using a model registry and
model serving platform, respectively.

Naturally, many organizations have not had the same resources that were available to
Uber to build equivalent ML infrastructure. Many of them have been stuck at the
model training stage. Now, however, in 2024, the equivalent ML infrastructure has
become accessible, in the form of open-source and serverless feature stores, vector
databases, model registries, and model serving platforms. In this book, we will lever-
age open-source and serverless ML infrastructure platforms to build ML systems. We
will learn the inner workings of the underlying ML infrastructure, but we will not
build that ML infrastructure—we will not start with learning Docker, Kubernetes, and
equivalent cloud infrastructure. You no longer need to build ML infrastructure to
start building ML systems. Instead, we will focus on building the software programs
that make up the ML system—the ML pipelines. We will work primarily in Python,
making this book widely accessible for Data Scientists, ML Engineers, Architects, and
Data Engineers.

From ML Models to MLOps to ML Systems

The value of a ML model is derived from the predictions it makes on new input data.
In most ML courses, books, and online tutorials, you are given a static dataset and
asked to train a model on some of the data and evaluate its performance using the
rest of the data (the holdout data). That is, you only make a prediction once on the

xvi | Introduction

https://eng.uber.com/michelangelo-machine-learning-platform/

holdout data—your model only generates value once. Many ML educators will say
something like: “we leave it as an exercise to the reader to productionize your ML
model®, without defining what is involved in model productionalization. The new
discipline of Machine learning operations (MLOps) attempts to fill in the gaps to pro-
ductionization by defining processes for how to automate model (re-)training and
deployment, and automating testing to increase your confidence in the quality of
your data and models. This book fills in the gaps by making the leap from MLOps to
building ML systems. We will define the principles of MLOps (automated testing,
versioning, and monitoring), and apply those principles in many examples through-
out the book. In contrast to much existing literature on MLOps, we will not cover
low-level technologies for building ML infrastructure, such as Docker and Terraform.
Instead, what we will coverthe programs that make up ML systems, the ML pipelines,
and the ML infrastructure they will run on in detail.

Supervised learning primer and what is a feature
anyway?

In this book, we will frequently refer to concepts from supervised learning. This sec-
tion is a brief introduction to those concepts that you may safely skip if you already
know them.

Machine learning is concerned with making accurate predictions. Features are meas-
urable properties of entities that we can use to make predictions. For example, if we
want to predict if a piece of fruit is an apple or an orange (apple or orange is the fruit’s
label), we could use the fruit’s color as a feature to help us predict the correct class of
fruit, see figure 1. This is a classification problem: given examples of fruit along with
their color and label, we want to classify a fruit as either an apple or orange using the
color feature. As we are only considering 2 classes of fruit, we can call this a binary
classification problem.

Introduction | xvii

feature color: green - RGB(8,128,09) feature color: orange - RGB(255,165,0)
feature weight: 70-250gr feature weight: 60-300gr

Figure I-1. A feature is a measurable property of an entity that has predictive power for
the machine learning task. Here, the fruit’s color has predictive power of whether the
fruit is an apple or an orange.

The fruit’s color is a good feature to distinguish apples from oranges, because oranges
do not tend to be green and apples do not tend to be orange in color. Weight, in con-
trast, is not a good feature as it is not predictive of whether the fruit is an apple or an
orange. “Roundness” of the fruit could be a good feature, but it is not easy to measure
—a feature should be a measurable property.

A supervised learning algorithm trains a machine learning model (often abbreviated
to just ‘model’), using lots of examples of apples and oranges along with the color of
each apple and orange, to predict the label “Apple” or “Orange” for new pieces of fruit
using only the new fruit’s color. However, color is a single value but rather measured
as 3 separate values, one value for each of the red, green, and blue (RGB) channels. As
our apples and oranges typically have ‘0’ for the blue channel, we can ignore the blue
channel, leaving us with two features: the red and green channel values. In figure 2,
we can see some examples of apples (green circles) and oranges (orange crosses), with
the red channel value plotted on the x-axis and the green channel value plotted on the
y-axis. We can see that an almost straight line can separate most of the apples from
the oranges. This line is called the decision boundary and we can compute it with a
linear model that minimizes the distance between the straight line and all of the cir-
cles and crosses plotted in the diagram. The decision boundary that we learnt from
the data is most commonly called the (trained) model.

xvii | Introduction

/ Decision Boundary

255
|

Green
1

Hard to correctly classify
these “outliers” —
&1

as apples or oranges.

Red

Figure I-2. When we plot all of our example apples and oranges using the observed val-
ues for the red and green color channels, we can see that most apples are on the left of the
decision boundary, and most oranges are on the right. Some apples and oranges are,
however, difficult to differentiate based only on their red and green channel colors.

The model can then be used to classify a new piece of a fruit as either an apple or
orange using its red and green channel values. If the fruit’s red and green channel val-
ues place it on the left of the line, then it is an apple, otherwise it is an orange.

In figure 2, you can also see there are a small number of oranges that are not correctly
classified by the decision boundary. Our model could wrongly predict that an orange
is an apple. However, if the model predicts the fruit is an orange, it will be correct -
the fruit will be an orange. We can say that the model’s precision is 100% for oranges,
but is less than 100% for apples.

Another way to look at the model’s performance is to consider if the model predicts it
is an apple, and it is an apple - it will not be wrong. However, the model will not
always predict the fruit is an orange if the fruit is an orange. That is, the model’s recall
is 100% for apples. But if the model predicts an orange, it’s recall is less than 100%. In
machine learning, we often combine precision and recall in a single value called the
F1 Score, that can be used as one measure of the model’s performance. The F1 score is
the harmonic mean of precision and recall, and a value of 1.0 indicates perfect preci-
sion and recall for the model. Precision, recall, and F1 scores are model performance
measures for classification problems.

Let’s complicate this simple model. What if we add red apples into the mix? Now, we
want our model to classify whether the fruit is an apple or orange - but we will have
both red and green apples, see figure 3.

Introduction | xix

feature color: RGB(8,128,0) feature color: RGB(255,165,0) feature color: RGB(255, 0, 0)

Figure I-3. The red apple complicates our prediction problem because there is no longer a
linear decision boundary between the apples and oranges using only color as a feature.

We can see that red apples also have zero for the blue channel, so we can ignore that
feature. However, in figure 4, we can see that the red examples are located in the bot-
tom right hand corner of our chart, and our model (a linear decision boundary) is
broken—it would predict that red apples are oranges. Our model’s precision and
recall is now much worse.

255
1

Non-linear decision boundary,

/ needs more data points to train
/ Red apples

Green
1

Red

Figure I-4. When we add red apples to our training examples, we can see that we can no
longer use a straight line to classify fruit as orange or apple. We now need a non-linear
decision boundary to separate apples from oranges, and in order to learn the decision
boundary, we need a more complex model (with more parameters), more training exam-
ples, and m.

Our fruit classifier used examples of features and labels (apples or oranges) to train a
model (as a decision boundary). However, machine learning is not just used for clas-
sification problems. It is also used to predict numerical values—regression problems.
An example of a regression problem would be to estimate the weight of an apple. For

xx | Introduction

the regression problem of predicting the weight of an apple, two useful features could
be its diameter, and its green color channel value—dark green apples are heavier than
light green and red apples. The apple’s weight is called the target variable (we typically
use the term label for classification problems and target in regression problems).

For this regression problem, a supervised learning model could be trained using
examples of apples along with their green color channel value, diameter, and weight.
For new apples (not seen during training), our model, see figure 5, can predict the
fruit’s weight using its type, red channel value, green channel value, and diameter.

Apples
n
m -
o~
X, X, .
S CX
S — : X 5 0
< - X
o —
| | I | I
0 _ 30
Diameter

Figure I-5. This regression problem of predicting the weight of an apple can be solved
using a linear model that minimizes the mean-squared error

In this regression example, we don't technically need the full power of supervised
learning yet—a simple linear model will work well. We can fit a straight line (that pre-
dicts an apple’s weight using its green channel value and diameter) to the data points
by drawing the line on the chart such that it minimizes the distance between the line
and the data points (X,, X,, X;, X,, X;). For example, a common technique is to sum
together the distance between all the data points and the line in the mean absolute

Introduction | xxi

error (MAE). We take the absolute value of the distance of the data points to the line,
because if we didn’t take the absolute value then the distance for X, would be negative
and the distance for X, would be positive, canceling each other out. Sometimes, we
have data points that are very far from the line, and we want the model to have a
larger error for those outliers—we want the model to perform better for outliers. For
this, we can sum the square of distances and then take the square root of the total.
This is called the root mean-squared error (RMSE). The MAE and RMSE are both
metrics used to help fit our linear regression model, but also to evaluate the perfor-
mance of our regression model. Similar to our earlier classification example, if we
introduce more features to improve the performance of our regression model, we will
have to upgrade from our linear regression model to use a supervised learning regres-
sion model that can perform better by learning non-linear relationships between the
features and the target.

Now that we have introduced supervised learning to solve classification and regres-
sion problems, we can claim that supervised learning is concerned with extracting a
pattern from data (features and labels/targets) to a model, where the model’s value is
that it can used to perform inference (make predictions) on new (unlabeled) data
points (using only feature values). If the model performs well on the new data points
(that were not seen during training), we say the model has good generalization per-
formance. We will later see that we always hold back some example data points dur-
ing model training (a test set of examples that we don’t train the model on), so that we
can evaluate the model’s performance on unseen data.

Now we have introduced the core concepts in supervised learning’, let’s look at where
the data used to train our models comes from as well as the data that the model will
make predictions with.

The source code for the supervised training of our fruit classifier is available on the
book’s github repository in chapter one. If you are new to machine learning it is a
good exercise to run and understand this code.

1 The source code for the supervised training of our fruit classifier is available on the book’s github repository
in chapter one. If you are new to machine learning it is a good exercise to run and understand this code.

xxii | Introduction

CHAPTER 1
Building Machine Learning Systems

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book. The GitHub repo can be found at https://
github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Imagine you have been tasked with producing a financial forecast for the upcoming
financial year. You decide to use machine learning as there is a lot of available data,
but, not unexpectedly, the data is spread across many different places—in spread-
sheets and many different tables in the data warehouse. You have been working for
several years at the same organization, and this is not the first time you have been
given this task. Every year to date, the final output of your model has been a Power-
Point presentation showing the financial projections. Each year, you trained a new
model, and your model made one prediction and you were finished with it. Each
year, you started effectively from scratch. You had to find the data sources (again), re-
request access to the data to create the features for your model, and then dig out the
Jupyter notebook from last year and update it with new data and improvements to
your model.

This year, however, you realize that it may be worth investing the time in building the
scaffolding for this project so that you have less work to do next year. So, instead of

23

https://github.com/featurestorebook/mlfs-book
https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com

delivering a powerpoint, you decide to build a dashboard. Instead of requesting one-
off access to the data, you build feature pipelines that extract the historical data from
its source(s) and compute the features (and labels) used in your model. You have an
insight that the feature pipelines can be used to do two things: compute both the his-
torical features used to train your model and compute the features that will be used to
make predictions with your trained model. Now, after training your model, you can
connect it to the feature pipelines to make predictions that power your dashboard.
You thank yourself one year later when you only have to tweak this ML system by
adding/updating/removing features, and training a new model. The time you saved in
grunt data source, cleaning, and feature engineering, you now use to investigate new
ML frameworks and model architectures, resulting in a much improved financial
model, much to the delight of your boss.

The above example shows the difference between training a model to make a one-off
prediction on a static dataset versus building a batch ML system - a system that auto-
mates reading from data sources, transforming data into features, training models,
performing inference on new data with the model, and updating a dashboard with
the model’s predictions. The dashboard is the value delivered by the model to stake-
holders.

If you want a model to generate repeated value, the model should make predictions
more than once. That means, you are not finished when you have evaluated the mod-
el’s performance on a test set drawn from your static dataset. Instead you will have to
build ML pipelines, programs that transform raw data into features, and feed features
to your model for easy retraining, and feed new features to your model so that it can
make predictions, generating more value with every prediction it makes.

You have embarked on the same journey from training models on static datasets to
building ML systems. The most important part of that journey is working with
dynamic data, see figure 1. This means moving from static data, such as the hand
curated datasets used in ML competitions found on Kaggle.com, to batch data, data-
sets that are updated at some interval (hourly, daily, weekly, yearly), to real-time data.

24 | Chapter 1: Building Machine Learning Systems

Real-Time
Data

Business
Value Batch

Data

Static
Data

bmmmm e

Figure 1-1. A ML system that only generates a one-off prediction on a static dataset gen-
erates less business value than a ML system that can make predictions on a schedule
with batches of input data. ML systems that can make predictions with real-time data
are more technically challenging, but can create even more business value.

A ML system is a software system that manages the two main life cycles for a model:
training and inference (making predictions).

The Evolution of Machine Learning Systems

In the mid 2010s, revolutionary ML Systems started appearing in consumer Internet
applications, such as image tagging in Facebook and Google Translate. The first gen-
eration of ML systems were either batch ML systems that make predictions on a
schedule, see figure 2, or interactive online ML systems that make predictions in
response to user actions, see figure 3.

TRAIN 3 model
Historical ~ =-__ ;
Data N monolithic-batch-pipeline.py '
1. Create 3. Predict predictions .| Prediction
yd Features with model Consumer
4 features
w
N EE INFERENCE

Figure 1-2. A monolithic batch ML system that can run in either (1) training mode or
(2) inference mode.

The Evolution of Machine Learning Systems | 25

Batch ML systems have to ensure that the features created for training data and the
features created for batch inference are consistent. This can be achieved by building a
monolith batch pipeline program that is run in either training mode or inference
mode. The architecture ensures the same “Create Features” code is run in training
and inference.

In figure 3, you can see an interactive ML system that receives requests from clients
and responds with predictions in real-time. In this architecture, you need two sepa-
rate systems - an offline training pipeline, and an online model serving service. You
can no longer ensure consistent features between training and serving by having a
single monolithic program. Early solutions to this problem involved versioning the
feature creation source code and ensuring both training and serving use the same
version, as in this Twitter presentation.

Model

model Registry

training-pipeline.py

online-
inference-

. ipelil (Creat |
features/labels | Train pipelinepy | | Greate | reauest | prgiction
Model ‘ Consumer
y v

>

data Create
Features

Historical
Data

model

prediction |

Figure 1-3. A (real-time) interactive ML system requires a separate offline training sys-
tem from the online inference systems.

Notice that the online inference pipeline is stateless. We will see later than stateful
online inference pipelines require adding a feature store to this architecture.

Stateless online ML systems were, and still are, acceptable for some use cases. For
example, you can download a pre-trained large language model (LLM) and imple-
ment a chatbot using only the online inference pipeline - you don't need to imple-
ment the training pipeline - which probably cost millions of dollars to run on 100s or
1000s of GPUs. The online inference pipeline can be as simple as a Python program
run on a web application server. The program will load the LLM into memory on
startup and make predictions with the LLM on user input data in response to predic-
tion requests. You will need to tokenize the user input prompt before calling predict
on the model, but otherwise, you need almost no knowledge of ML to build the
online inference service using an LLM.

However, a personalized LLM (or any ML system with personalized predictions)
needs to integrate external data, in a process called retrieval augmentation generation
(RAG). RAG enables the LLM to enrich its input prompt with historical data or con-
textual data. In addition to RAG, you can also collect the LLM responses and user

26 | Chapter 1: Building Machine Learning Systems

https://www.youtube.com/watch?v=UNailXoiIrY&t=343s

responses (the prediction logs), and with them you will be able to generate more
training data to improve your LLM.

So, the general problem here is one of re-integration of the offline training system
and the online inference system to build a stateful integrated ML system. That general
problem has been addressed earlier by feature stores, introduced as a platform by
Uber in 2018. The feature store for machine learning has been the key ML infrastruc-
ture platform in connecting the independent training and inference pipelines. One of
the main motivations for the adoption of feature stores by organizations has been that
they make state available to online inference programs, see figure 4. The feature store
enables input to an online model to be augmented with historical and context data by
low latency retrieval of precomputed feature data from the feature store. In general,
feature stores enable richer, personalized online models compared to stateless online
models. You can read more about feature stores in Chapters 4 and 5.

Model
model Registry

model

Y

inference-pipeline.py

TRAIN Create | Train Model . weteaest Results
Train Data Features ~ Model Serving | Sanes’| | prediction |

\ i response

\

" Feature Store

Figure 1-4. Many (real-time) interactive ML systems also require history and context to
make personalized predictions. The feature store enables personalized history and con-
text to be retrieved at low latency as precomputed features for online models.

The evolution of the ML system architectures described here, from batch to stateless
real-time to real-time systems with a feature store, did not happen in a vacuum. It
happened within a new field of machine learning engineering called machine learn-
ing operations (MLOps) that can be dated back to 2015, when authors at Google pub-
lished a canonical paper entitled Hidden Technical Debt in Machine Learning
Systems. The paper cemented in ML developers minds the adage that only a small
percentage of the work in building ML systems was training models. Most of the
work is in data management and building and operating the ML system infrastruc-
ture.

The Evolution of Machine Learning Systems | 27

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Inspired by the DevOps' movement in software engineering, MLOps is a set of prac-
tices and processes for building reliable and scalable ML systems that can be quickly
and incrementally developed, tested, and rolled out to production using automation
where possible. Some of the problems considered part of MLOps were addressed
already in this section, such as how to ensure consistent feature data between training
and inference. An O’Reilly book entitled “Machine Learning Design Patterns” pub-
lished 30 patterns for building ML systems in 2020, and many problems related to
testing, versioning, and monitoring features, models, and data have been identified by
the MLOps community.

However, to date, there is no canonical MLOps architecture for ML systems. As of
early 2024, Google and Databricks have competing MLOps architectures containing
26 and 28 components, respectively. These MLOps architectures more closely resem-
ble the outdated enterprise waterfall lifecycle development model that DevOps helped
replace, rather than the test-driven, start-small development culture of DevOps,
which promotes getting to a working system as fast as possible.

MLOps is currently in a phase similar to the early years of databases, where develop-
ers were expected to understand the inner workings of magnetic disk drives in order
to retrieve data with high performance. Instead of saying what data to retrieve with
SQL, early database users had to tell databases how to read the data from disk. Simi-
larly, most MLOps courses today assume that you need to build or deploy the ML
infrastructure needed to run ML systems. That is, you start by setting up continuous
integration systems, how to containerize your ML pipelines, how to automate the
deployment of your ML infrastructure with Terraform, and how Kubernetes works.
Then you only have to cover the remaining 20 other components identified for build-
ing reliable ML systems, before you can build your first ML system.

In this book we will build on existing widely deployed ML infrastructure, including a
feature store to manage feature and label data for both training and inference, a
model registry as a store for trained models, and a model serving platform to deploy
online models behind a REST or gRPC API. In the examples covered in this book, we
will work with (free) serverless versions of these platforms, so you will not have to
learn infrastructure-as-code or Kubernetes to get started. Similarly, we will use ser-
verless compute platforms so that you dont even have to containerize your code,
meaning knowledge of Python is enough to be able to build the ML pipelines that will
make up the ML systems you build that will run on (free) serverless ML infrastruc-
ture.

1 Wikipedia states that “DevOps integrates and automates the work of software development (Dev) and IT
operations (Ops) as a means for improving and shortening the systems development life cycle”

28 | Chapter 1: Building Machine Learning Systems

The Anatomy of a Machine Learning System

One of the main challenges you will face in building ML systems is managing the data
that is used to train models and the data that models make predictions with. We can
categorize ML systems by how they process the new data that is used to make predic-
tions with. Does the ML system make predictions on a schedule, for example, once
per day, or does it run 24x7, making predictions in response to user requests?

For example, Spotify weekly is a batch ML system, a recommendation engine, that,
once per week, predicts which songs you might want to listen to and updates them in
your playlist. In a batch ML system, the ML system reads a batch of data (all 575m+
users in the case of Spotify), and makes predictions using the trained recommender
ML model for all rows in the batch of data. The model takes all of the input features
(such as how often you listen to music and the genres of music you listen to) and, for
each user, makes a prediction of the 30 “best” songs for you for the upcoming week.
The predictions are then stored in a database (Cassandra) and when the user logs on,
the Spotify weekly recommendation list is downloaded from the database and shown
as recommendations in the user interfaces.

TiktoK’s recommendation engine, on the other hand, is famous for adapting its rec-
ommendations in near real-time as you click and watch their short-form videos. This
is known as a real-time ML system. It predicts which videos to show you as you scroll
and watch videos. Andrej Karpathy, ex head of AI at Tesla, said Tiktoks' recommen-
dation engine “is scary good. It’s digital crack” Tiktok described in its Monolith
research paper how it both retrains models very frequently and also how it updates
historical feature values used as input to models (what genre of video you viewed last,
how long you watched it for, etc) in near real-time with stream-processing (Apache
Flink). When Tiktok recommends videos to you, it uses a wealth of real-time data as
well as any query your enter. Iyour recent viewing behavior (clicks, swipes, likes),
your historical preferences, as well as recent context information (such as what videos
are trending right now for users like you). Managing all of this user data in real-time
and at scale is a significant engineering challenge. However, this engineering effort
was rewarded as Tiktok were the first online video platform to include real-time rec-
ommendations, which gave them a competitive advantage over incumbents, enabling
them to build the world’s second most popular online video platform.

We will address head-on the data challenge in building ML systems. Your ML system
may need different types of data to operate - including user input data, historical data,
and context data. For example, a real-time ML system that predicts the validity of an
insurance claim will take as input the details of the claim, but will augment this with
the claimant’s history and policy details, and further enrich this with context infor-
mation about the current rate of claims for this particular policy. This ML system is a
long way from the starting point where a Data Scientist received a static data dump
and was asked if she could improve the detection of bogus insurance claims.

The Anatomy of a Machine Learning System | 29

https://twitter.com/karpathy/status/1507893647341142016
https://twitter.com/karpathy/status/1507893647341142016
https://arxiv.org/pdf/2209.07663.pdf
https://arxiv.org/pdf/2209.07663.pdf

Types of Machine Learning

The main types of machine learning used in ML systems are supervised learning,
unsupervised learning, self-supervised learning, semi-supervised learning, reinforce-
ment learning, and in-context learning.

Supervised Learning

In supervised learning, you train a model with data containing features and labels.
Each row in a training dataset contains a set of input feature values and a label
(the outcome, given the input feature values). Supervised ML algorithms learn
relationships between the labels (also called the target variable) and the input fea-
ture values. Supervised ML is used to solve classification problems, where the ML
system will answer yes-or-no questions (is there a hotdog in this photo?) or make
a multiclass classification (what type of hotdog is this?). Supervised ML is also
used to solve regression problems, where the model predicts a numeric value
using the input feature values (estimate the price of this apartment, given input
features such as its area, condition, and location). Finally, supervised ML is also
used to fine-tune chatbots using open-source large language models (LLMs). For
example, if you train a chatbot with questions (features) and answers (labels)
from the legal profession, your chatbot can be fine-tuned so that it talks like a

lawyer.

Unsupervised Learning

In contrast, unsupervised learning algorithms learn from input features without
any labels. For example, you could train an anomaly detection system with
credit-card transactions, and if an anomalous credit-card transaction arrives, you
could flag it as suspected for fraud.

Semi-supervised Learning

In semi-supervised learning, you train a model with a dataset that includes both
labeled and unlabeled data, usually mostly unlabeled. Semi-supervised ML com-
bines supervised and unsupervised machine learning methods. Continuing our
credit-card fraud detection example, if we had a small number of examples of
fraudulent credit card transactions, we could use semi-supervised methods to
improve our anomaly detection algorithm with examples of bad transactions. In
credit-card fraud, there is typically an extreme imbalance between “good” and
“bad” transactions (<0.001%), making it impractical to train a fraud detection
model with only supervised ML.

Self-supervised Learning

Self-supervised learning involves generating a labeled dataset from a fully unla-
beled one. The main method to generate the labeled dataset is masking. For natu-
ral language processing (NLP), you can provide a piece of text and mask out
individual words (Masked-Language Modeling) and train a model to predict the

30

Chapter 1: Building Machine Learning Systems

missing word. Here, we know the label (the missing word), so we can train the
model using any supervised learning algorithm. In NLP, you can also mask out
entire sentences with next sentence prediction that can teach a model to under-
stand longer-term dependencies across sentences. The language model BERT
uses both masked-language modeling and next sentence prediction for training.
Similarly, with image classification, you can mask out a (randomly chosen) small
part of each image and then train a model to reproduce the original image with
as high fidelity as possible.

Reinforcement Learning
Reinforcement learning (RL) is another type of ML algorithm (not covered in this
book). RL is concerned with learning how to make optimal decisions. In RL, an
agent learns the best actions to take in an environment, by the environment giv-
ing the agent a reward after each action the agent executes. The agent then adapts
its behavior to either maximize the rewards it receives (or minimizes the costs)
for each action.

In-context Learning

There is also a very recent type of ML found in large language models (LLMs)
called in-context learning. Supervised ML, unsupervised ML, semi-supervised
ML, and reinforcement learning can only learn with data they are trained on.
That is, they can only solve tasks that they are trained to solve. However, LLMs
that are large enough exhibit a different type of machine learning - in-context
learning (ICL) - the ability to learn to solve new tasks by providing “training”
examples in the prompt (input) to the LLM. LLMs can exhibit ICL even though
they are trained only with the objective of next token prediction. The newly
learnt skill is forgotten directly after the LLM sends its response - its model
weights are not updated as they would be during training.

ChatGPT is a good example of a ML system that uses a combination of different types
of ML. ChatGPT includes a LLM trained use self-supervised learning to train the
foundation model, supervised learning to fine-tune the foundation model to create a
task-specific model (such as a chatbot), and reinforcement learning (with human
feedback) to align the task-specific model with human values (e.g., to remove bias
and vulgarity in a chatbot). Finally, LLMs can learn from examples in the input
prompt using in-context learning.

Data Sources

Data for ML systems can, in principle, come from any available data source. That
said, some data sources and data formats are more popular as input to ML systems. In

The Anatomy of a Machine Learning System | 31

this section, we introduce the data sources most commonly encountered in Enter-
prise computing.?

Tabular data

Tabular data is data stored as tables containing columns and rows, typically in a data-
base. There are two main types of databases that are sources for data for machine
learning:

o Relational databases or NoSQL databases, collectively known as row-oriented
data stores as their storage layout is optimized for reading and writing rows of
data;

o Analytical databases such as data warehouses and data lakehouses, collectively
known as column-oriented data stores as their storage layout is optimized for
reading and processing columns of data (such as computing the min/max/aver-
age/sum for a column).

Row-oriented databases are operational data stores that power a wide variety of appli-
cations that store their records (or rows) row-wise on disk or in-memory. Relational
databases (such as MySQL or Postgres) store their data as rows as pages of data along
with indexes (such as B-Trees and hash indexes) to efficiently find data. NoSQL data
stores (such as Cassandra, and RocksDB) typically use log-structured merge trees
(LSM Trees) to store their data along with indexes (such as Bloom filters) to effi-
ciently find data. Some data stores (such as MongoDB) combine both B-Trees and
LSM Trees. Some row-oriented databases are distributed, scaling out to run on many
servers, some as servers on a single host, and some are embedded databases that are a
library that can be included with your application.

From a developer perspective, the most important property of row-oriented data-
bases is the data format you use to read and write data. Popular data formats include
SQL and Object-Relational Mappers (ORM) for SQL (MySQL, Postgres), key-value
pairs (Cassandra, RockDB), or JSON documents (MongoDB).

Analytical (or columnar) data stores are historical stores of record used for analysis of
potentially large volumes of data. In Enterprises, data warehouses collect all the data
stored in all operational data stores. Programs called data pipelines extract data from
the operational data stores, transform the data into a format suitable for analysis and
machine learning, and load the transformed data into the data warehouse or lake-
house. If the transformations are performed in the data pipeline (for example, a Spark
or Airflow program) itself, then the data pipeline is called an ETL pipeline (extract,

2 Enterprise computing refers to the information storage and processing platforms that businesses use for oper-
ations, analytics, and data science.

32 | Chapter 1: Building Machine Learning Systems

transform, load). If the data pipeline first loads the data in the Data Warehouse and
then performs the transformations in the Data Warehouse itself (using SQL), then it
is called an ELT pipeline (extract, load, transform). Spark is a popular framework for
writing ETL pipelines and DBT is a popular framework for writing ELT pipelines.

Columnar data stores are the most common data source for historical data for ML
systems in Enterprises. Many data transformations for creating features, such as
aggregations and feature extraction, can be efficiently and scalably implemented in
DBT/SQL or Spark on data stored in data warehouses. Python frameworks for data
transformations, such as Pandas 2+ and Polars, are also popular platforms for feature
engineering with data of more reasonable scale (GBs, not TBs or more).

A Lakehouse is a combination of (1) tables stored as columnar files in a data lake
(object store or distributed file system) and (2) data processing that ensures ACID
operations on the table for reading and writing that store columnar data. They are
collectively known as Table File Formats. There are 3 popular open-source table for-
mats: Apache Iceberg, Apache Hudi, and Delta Lake. All 3 provide similar functional-
ity, enabling you to update the tabular data, delete rows from tables, and
incrementally add data to tables. You no longer need to read up the old data, update
it, and write back your new version of the table. Instead you can just append or upsert
(insert or update) data into your tables.

Unstructured Data

Tabular data and graph data, stored in graph databases, are often referred to as struc-
tured data. Every other type of data is typically thrown into the antonymous bucket
called unstructured data—text (pdfs, docs, html, etc), image, video, audio, and sensor-
generated data are all considered unstructured data. The main characteristic of
unstructured data is that it is typically stored in files, sometimes very large files of
GBs or more, in low cost data stores, such as object stores or distributed file systems.
The one type of data that can be either structured or unstructured is text data. If the
text data is stored in files, such as markdown files, it is considered unstructured data.
However, if the text is stored as columns in tables, it is considered structured data.
Most text data in the Enterprise is unstructured and stored in files.

Deep learning has made huge strides in solving prediction problems with unstruc-
tured data. Image tagging services, self-driving cars, voice transcription systems, and
many other ML systems are all trained with vast amounts of unstructured data. Apart
from text data, this book, however, focuses on ML systems built with structured data
that comes from feature stores.

The Anatomy of a Machine Learning System | 33

Event Data

An event bus is a data platform that has become popular as (1) a store for real-time
event data and (2) a data bus for storing data that is being moved or copied between
different data stores. In this book, we will mostly consider event buses as the former, a
data source for real-time ML systems. For example, at the consumer tech giants, every
click you make on their website or mobile app, and every piece of data you enter is
typically first sent to a massively scalable distributed event bus, such as Apache Kafka,
from where real-time ML systems can use that data to create fresh features for models
powering their ML-enabled applications.

API-Provided Data

More and more data is being stored and processed in Software-as-a-Service (SaaS)
systems, and it is, therefore, becoming more important to be able to retrieve or scrape
data from such services using their public application programming interfaces
(APIs). Similarly, as society is becoming increasingly digitized, more data is becoming
available on websites that can be scraped and used as a data source for ML systems.
There are low-code software systems that know about the APIs to popular SaaS plat-
forms (like Salesforce and Hubspot) and can pull data from those platforms into data
warehouses, such as Airbyte. But sometimes, external APIs or websites will not have
data integration support, and you will need to scrape the data. In Chapter 2, we will
build an Air Quality Prediction ML System that scrapes data from the closest public
Air Quality Sensor data source to where you live (there are tens of thousands of these
available on the Internet today - probably one closer to you than you imagine).

Ethics and Laws for Data Sources

In addition to understanding how to collect data from your data sources, you also
have to understand the laws, ethics, and organizational policies that govern this data.
Does the data contain personally identifiable information (PII data)? Is use of the data
for machine learning restricted by laws, such as GDPR or CCAP or the EU Al act?
What are your organization’s policies for the use of this data? It is also your responsi-
bility as an individual to understand if the ML system you are building is ethical and
that you personally follow a code of ethics for AL

Incremental Datasets

Most of the challenges in building and operating ML systems are in managing the
data. Despite this, data scientists have traditionally been taught machine learning with
the simplest form of data: immutable datasets. Most machine learning courses and
books point you to a dataset as a static file. If the file is small (a few GBs at most), the

34 | Chapter 1: Building Machine Learning Systems

file often contains comma-separated values (csv), and if the data is large (GBs to
TBs), a more efficient file format, such as Parquet® is used.

For example, the well-known titanic passenger dataset* consists of the following files:

train.csv
the training set you should use to train your model;

test.csv
the test set you should use to evaluate the performance of your trained model.

The dataset is static, but you need to perform some basic feature engineering. There
are some missing values, and some columns have no predictive power for the prob-
lem of predicting whether a given passenger survives the Titanic or not (such as the
passenger ID and the passenger name). The Titanic dataset is popular as you can
learn the basics of data cleaning, transforming data into features, and fitting a model
to the data.

Immutable files are not suitable as the data layer of record in an
enterprise environment where GDPR (the EU’s General Data Pro-
tection Regulation) and CCPA (California Consumer Privacy Act)
require that users are allowed to have their data deleted, updated,
and its usage and provenance tracked. In recent years, open-source
table formats for data lakes have appeared, such as Apache Iceberg,
Apache Hudi, and Delta Laker, that support mutable datasets (that
work with GDPR and CCPA) that are designed to work at massive
scale (PBs in size) on low cost storage (object stores and distributed
file systems).

In introductory ML courses, you do not typically learn about incremental datasets. An
incremental dataset is a dataset that supports efficient appends, updates, and dele-
tions. ML systems continually produce new data - whether once per year, day, hour,
minute, or even second. ML systems need to support incremental datasets. In ML
systems built with time-series data (for example, online consumer data), that data
may also have freshness constraints, such that you need to periodically retrain your
model so that it does not degrade in performance. So, we need to accumulate histori-
cal data in incremental datasets so that, over time, more training data becomes avail-

3 Parquet files store tabular data in a columnar format - the values for each column are stored together, ena-
bling faster aggregate operations at the column level (such as the average value for a numerical column) and
better compression, with both dictionary and run-length encoding.

4 The titanic dataset is a well-known example of a binary classification problem in machine learning, where you
have to train a model to predict if a given passenger will survive or not.

The Anatomy of a Machine Learning System | 35

https://parquet.apache.org/docs/file-format/data-pages/encodings/
https://www.kaggle.com/competitions/titanic/data

able for re-training models to ensure high performance for our ML systems - models
degrade over time if they are not periodically retrained using recent (fresh) data.

Incremental datasets introduce challenges for feature engineering. Some of the data
transformations used to create features are parametrized by all of the feature data,
such as feature encoding and scaling. This means that if we want to store encoded
feature data in an incremental dataset, every time we write new feature data, we will
have to re-encode all the feature data for that feature, causing massive write amplifica-
tion. Write amplification is when writes (appends or updates) take increasingly longer
as the dataset increases in size - it is not a good system property. That said, there are
many data transformations in machine learning, traditionally called “data preparation
steps’, that are compatible with incremental datasets, such as aggregations, binning,
and dimensionality reduction. In Chapters 6 and 7, we categorize data transforma-
tions for feature engineering as either (1) data transformations that create features
stored in incremental datasets that are reusable across many models, and (2) data
transformations that are not stored in incremental datasets and create features that
are specific to one model.

What is an incremental dataset? In this book, we will not use the tried and tested and
failed method of creating incremental datasets by storing the new data as a separate
immutable file (titanic_passengers_vl.csv,..., titanic_passengers_vN.csv). Nor will we
introduce write amplification by reading up the existing dataset, updating the dataset,
and saving it back (for example, as parquet files). Instead, we will use a feature store
and we append, update, and delete data in tables called feature groups. A detailed
introduction to feature stores can be found in Chapters 4 and 5, but we will start
using them already in Chapter 2.

The key technology for maintaining incremental datasets for ML is the pipeline. Pipe-
lines collect and process the data that will be used to train our ML models. The pipe-
line is also what we will use to periodically retrain models. And we even use pipelines
to automate the predictions produced by the batch ML systems that run on a sched-
ule, for example, daily or hourly.

What is a ML Pipeline ?

A pipeline is a program that has well-defined inputs and outputs and is run either on
a schedule or 24x7. ML Pipelines is a widely used term in ML engineering that loosely
refers to the pipelines that are used to build and operate ML systems. However, a
problem with the term ML pipeline is that it is not clear what the input and output to
a ML pipeline is. Is the input raw data or training data? Is the model part of input or
the output? In this book, we will use the term ML pipeline to refer collectively to any
pipeline in a ML system. We will not use the term ML pipeline to refer to a specific
stage in a ML system, such as feature engineering, model training, or inference.

36 | Chapter 1: Building Machine Learning Systems

An important property of ML systems is modularity. Modularity involves structuring
your ML system such that its functionality is separated into independent components
that can be independently run and tested. Modules should be kept small and easy to
understand/document. Modules should enable reuse of functionality in ML systems,
clear separation of work between teams, and better communication between those
teams through shared understanding of the concepts and interfaces in the ML sys-
tem.

In figure 5, we can see an example of a modular ML system that has factored its func-
tionality into three independent ML pipelines: a feature pipeline, a training pipeline,
and an inference pipeline.

Al-Enabled
App

ML Pipelines

Predictions

Feature Features/Labels

Pipeline

Batch Data or
Real-Time Data

Training el
Pipeline

Inference | Logs Monitoring &
Pipeline Debugging
Features

Figure 1-5. A ML pipeline has well-defined inputs and outputs. The outputs of ML pipe-
lines can be inputs to other ML pipelines or to external ML Systems that use the predic-
tions and prediction logs to make them “Al-enabled”.

The three different pipelines have clear inputs and outputs and can be developed and
operated independently:

o A feature pipeline takes data as input and produces reusable features as output.

o A training pipeline takes features as input trains a model and outputs the trained
model.

o An inference pipeline takes features and a model as input and outputs predictions
and prediction logs.

The feature pipeline is similar to an ETL or ELT data pipeline, except that its data
transformation steps produce output data in a format that is suitable for training
models. There are many common data transformation steps between data pipelines
and feature pipelines, such as computing aggregations, but many transformations are
specific to ML, such as dimensionality reduction and data validation checks specific
to ML. Feature pipelines typically do not need GPUs, but run instead on commodity

Whatis a ML Pipeline? | 37

CPUs. They are often written in frameworks such as DBT/SQL, Apache Spark,
Apache Flink, Pandas, and Polars, and they are scheduled to run at defined intervals
by some orchestration platform (such as Apache Airflow, Dagster, Modal, or Mage).
Feature pipelines can also be streaming applications that run 24x7 and create fresh
features for use in real-time ML systems. The output of feature pipelines are features
that can be reused in one or model models. To ensure features are reusable, we do not
encode or scale feature values in feature pipelines. Instead these transformations
(called model-dependent transformations as they are parameterized by the training
dataset), are performed consistently in the training and inference pipelines.

The training pipeline is typically a Python program that takes features (and labels for
supervised learning) as input, trains a model (using GPUs for deep learning), and
saves the model in a model registry. Before saving the model in the model registry, it
is important to additionally validate that the model has good performance, is not
biased against potential groups of users, and, in general, does nothing bad.

The inference pipeline is either a batch program or an online service, depending on
whether the ML system is a batch system or a real-time system. For batch ML sys-
tems, the inference pipeline typically reads features computed by the feature pipeline
and the model produced by the training pipeline, and then outputs the model’s pre-
dictions for the input feature values. Batch inference pipelines are typically imple-
mented in Python using either PySpark or Pandas/Polars, depending on the size of
input data expected (PySpark is used when the input data is too large to fit on a single
server). For real-time ML systems, the online inference pipeline is a program hosted
as a service in model serving infrastructure. The model serving infrastructure receives
user requests and invokes the online inference pipeline that can compute features
using on user input data and enrich using pre-computed features and even features
computed from external APIs. Online inference pipelines produce predictions that
are sent as responses to client requests as well as prediction log entries containing the
input feature values and the output prediction. Prediction logs are used to monitor
the performance of ML systems and to provide logs for debugging ML systems.
Another less common type of real-time ML system is a stream-processing system that
uses a trained model to make predictions on features computed from streaming input
data.

Building our first minimal viable ML system using feature, training, and inference
pipelines is only the first step. You now need to iteratively improve this system to
make it a production ML system. This means you should follow best practices in how
to shorten your development loop while having high confidence that your changes
will not break your ML system or clients of your ML system. For this, we will follow
best practices from MLOps.

38 | Chapter 1: Building Machine Learning Systems

Notebooks as ML Pipelines?

Many software engineering problems arise with Jupyter/Colaboratory notebooks
when you write ML pipelines as notebooks, including:

o There is a huge temptation to build a monolithic ML pipeline that does feature
engineering, model training, and inference in one single notebook;

o Features are computed in cells making it impossible to write unit tests for the fea-
ture logic;

« Many orchestration engines do not support scheduling notebooks as jobs.

These problems can be overcome by following good software engineering practices,
such as refactoring feature computation code into modules that are invoked by the
notebook—the feature logic can then be unit tested with PyTest. Even if your note-
book cannot be scheduled by an orchestrator, a common solution is convert the note-
book to a Python program, for example, using nbconvert, and then run the cells in
order from top to bottom.

Principles of MLOps

MLOps is a set of development and operational processes that enables ML Systems to
be developed faster that results in more reliable software. MLOps should help you
tighten the development loop between the time you make changes to software or
data, test your changes, and then deploy those changes to production. Many develop-
ers with a data science background are intimidated by the systems focus of MLOps on
automation, testing, and operations. In contrast, DevOps’ northstar is to get to a min-
imal viable product as fast as possible - you shouldn't need to build the 26 or 28
MLOps components identified by Google and Databricks, respectively, to get started.
This section is technology agnostic and discusses the MLOps principles to follow
when building a ML system. You will ultimately need infrastructure support for the
automated testing, versioning, and monitoring of ML artifacts, including features,
models, and predictions, but here, we will first introduce the principles that transcend
specific technologies.

The starting point for building reliable ML systems, by following MLOps principles,
is testing. An important observation about ML systems is that they require more lev-
els of testing than traditional software systems. Small bugs in data or code can easily
cause a ML model to make incorrect predictions. ML systems require significant
engineering effort to test and validate to make sure they produce high quality predic-
tions and are free from bias. The testing pyramid shown in figure 6 shows that testing
is needed throughout the ML system lifecycle from feature development to model
training to model deployment.

Whatis a ML Pipeline? | 39

Tested
ML-Apps

Tested Models

Tested Features

/ Untrusted Raw Data

Figure 1-6. The testing pyramid for ML Systems is higher than traditional software sys-
tems, as both code and data need to be tested, not just code.

It is often said that the main difference between testing traditional software systems
and ML systems is that in ML systems we need to test both the source-code and data -
not just the source-code. The features created by feature pipelines can have their logic
tested with unit tests and their input data checked with data validation tests, see
Chapter 5. The models need to be tested for performance, but also for a lack of bias
against known groups of vulnerable users, see Chapter 6. Finally, at the top of the pyr-
amid, ML-Systems need to test their performance with A/B tests before they can
switch to use a new model, see Chapter 7.

Given this background on testing and validating ML systems and the need for auto-
mated testing and deployment, and ignoring specific technologies, we can tease out
the main principles for MLOps. We can express it as MLOps folks believe in:

 Automated testing of changes to your source code;

o Automated deployment of ML artifacts (features, training data, models);

40 | Chapter 1:Building Machine Learning Systems

« Validation of data ingested into your ML system;
« Versioning of ML artifacts;
o A/B testing ML artifacts;

« Monitoring the predictions, prediction quality, and SLAs (service-level agree-
ments) for ML systems.

MLOps folks believe in testing their ML systems and that running those tests should
have minimal friction on your development speed. That means automating the exe-
cution of your tests, with the tests helping ensure that changes to your code:

1. Do not introduce errors (it is important to catch errors early in a dynamically
typed language like Python),

2. Do not break any client contracts (for example, changes to feature logic can break
consumers of the feature data as can breaking schema changes for feature data or
even SLA violations due to changes that result in slower code),

3. Integrates as expected with data sources and sinks (feature store, model registry,
inference store), and

4. Do not introduce model bias or degrade model performance.

There are many DevOps platforms that can be used to implement continuous integra-
tion (CI) and continuous training (CT). Popular platforms for CI are Github Actions,
Jenkins, and Azure DevOps. An important point is that support for CI and CT are
not a prerequisite to start building ML systems. If you have a data science back-
ground, comprehensive testing is something you may not have experience with, and
it is ok to take time to incrementally add testing to both your arsenal and to the ML
systems you build. You can start with unit tests for functions (such as how to com-
pute features), model performance and bias testing your training pipeline, and add
integration tests for ML pipelines. You can automate your tests by adding CI support
to run your tests whenever you push code to your source code repository. Support for
testing and automated testing can come after you have built your first minimal viable
ML System to validate that what you built is worth maintaining.

MLOps folks love that feeling when you push changes in your source code, and your
ML artifact or system is automatically deployed. Deployments are often associated
with the concept of development (dev), pre-production (preprod), and production
(prod) environments. ML assets are developed in the dev environment, tested in pre-
prod, and tested again before for deployment in the prod environment. Although a
human may ultimately have to sign off on deploying a ML artifact to production, the
steps should be automated in a process known as continuous deployment (CD). In
this book, we work with the philosophy that you can build, test, and run your whole
ML system in dev, preprod, or prod environments. The data your ML system can
access will be dependent on which environment you deploy in (only prod has access

Whatisa MLPipeline? | 41

to production data). We will start by first learning to build and operate a ML system,
then look at CD in Chapter 12.

MLOps folks generally live by the database community maxim of “garbage-in,
garbage-out” Many ML systems use data that has few or no guarantees on its quality,
and blindly ingesting garbage data will lead to trained models that predict garbage.
The MLOps philosophy deems that rather requiring users or clients to clean the data
after it has arrived, you should validate all input data before it is made accessible to
users or clients of your system. In Chapter 5, we will dive into how to design and
write data validation tests and run them in feature and inference pipelines (these are
the pipelines that feed external data to your ML system). We will look at what mitigat-
ing actions we can take if we identify data as incorrect, missing, or corrupt.

MLOps is also concerned with operating ML systems - running, maintaining, and
updating systems. In particular, updating ML systems has historically been a very
complex, manual procedure where new models are rolled out in stages, checking for
errors and model performance at each stage. MLOps folks dream of a ML system
with a big green button and a big red button. The big green button upgrades your
system, and the big red button rolls back the most recent upgrade, see figure 7. Ver-
sioning of ML artifacts is a necessary prerequisite for the big green and red buttons.
Versioning enables ML systems to be upgraded without downtime, to support roll-
back after failed upgrades, and to support A/B testing.

Models Models
odel_v2 model_v2
model_v1 model_v1

Rollback

Features Upgrade Features
user_features_v1
user_features_v1

prod_features_v1

prod_features_v1

d_features_v2

prod_features_v2

Figure 1-7. Versioning of features and models is needed to be able to easily upgrade ML
systems and rollback upgrades in case of failure.

42 | Chapter 1:Building Machine Learning Systems

Versioning enables you to simultaneously support multiple versions of the same fea-
ture or model, enabling you to develop a new version, while supporting an older ver-
sion in production. Versioning also enables you to be confident if problems arise after
deploying your changes to production, that you can quickly rollback your changes to
a working earlier version (of the model and features that feed it).

MLOps folks love to experiment, especially in production. A/B testing is important
for ensuring continual delivery of service for a ML system that supports upgrades.
A/B testing requires versioning of ML artifacts, so that you can run two versions in
parallel. Models are connected to features, so we need to version both features and
models as well as training data.

Finally, MLOps folks love to know how their ML systems are performing and to be
able to quickly troubleshoot by inspecting logs. Operations teams refer to this as
observability for your ML system. A production ML system should collect metrics to
build dashboards and alerts for:

1. Monitoring the quality of your models’” predictions with respect to some business
key performance indicator (KPI),

2. Monitoring the quality/distribution of new data arriving in the ML system,

3. Measuring the performance of your ML system’s components (model serving,
feature store, ML pipelines)

Your ML system should provide service-level agreements (SLAs) for its performance,
such as responding to a prediction request within 100ms or to retrieve 100 precom-
puted features from the feature store in less than 10ms. Observability is also about
logging, not just metrics. Can Data Scientists quickly inspect model prediction logs to
debug errors and understand model behavior in production - and, in particular, any
anomalous predictions made by models? Prediction logs can also be collected for the
goal of creating new training data for models.

In chapters 12 and 13, we go into detail of the different methods and frameworks that
can help implement MLOps processes for ML systems with a feature store.

Machine Learning Systems with a Feature Store

A machine learning system is a platform that includes both the ML pipelines and the
data infrastructure needed to manage the ML assets (reusable features, training data,
and models) produced and consumed by feature engineering, model training, and
inference pipelines, see figure 8. When a feature store is used with a ML system, it
stores both the historical data used to train models as well as the latest feature data
used to make predictions (model inference). It provides two different APIs for read-
ing feature data - a batch API to efficiently read large volumes of feature data and an
realtime API to read the latest feature data at low latency.

Machine Learning Systems with a Feature Store | 43

= H 7 o
Data Feature Pipeline Training Pipeline Inference Pipeline | predictions
Sources AI Powered

Transform data into Train models with Make predictions with
features & labels features & labels models & new features
‘ Operational ‘

‘ On-Demand ‘
—

Model Registry

‘ Feature Store

Figure 1-8. A ML system with a feature store supports 3 different types of ML pipeline: a
feature pipeline, a training pipeline, and inference pipeline. Logging pipelines help imple-
ment observability for ML systems.

While the feature store stores feature data for ML pipelines, the model registry is the
storage layer for trained models. The ML pipelines in a ML system can be run on
potentially any compute platform. Many different compute engines are used for fea-
ture pipelines - including SQL, Spark, Flink, and Python - and whether they are batch
or streaming pipelines, they typically are operational services that need to either run
on a schedule (batch) or 24x7 (streaming). Training pipelines are most commonly
implemented in Python, as are online inference pipelines. Batch inference pipelines
can be Python, PySpark, or even a streaming compute engine or SQL database.

Given that this is the canonical architecture for ML systems with a feature store, we
can identify four main types of ML systems with this architecture.

Three Types of ML System with a Feature Store

A ML system is defined by how it computes its predictions, not by the type of appli-
cation that consumes the predictions. Given that, Machine learning (ML) systems
that use a feature store can be categorized into three different types:

1. Real-time interactive ML systems make predictions in response to user requests
using fresh feature data (at most a few seconds old). They ensure fresh features
either by computing features on-demand from request input data or by updating
precomputed features in an online feature store using stream processing;

2. Batch ML systems run on a schedule, running batch inference pipelines that take
new feature data and a model to make predictions that are typically stored in
some downstream database (called an inference store), to be later consumed by
some ML-enabled application;

44 | Chapter 1: Building Machine Learning Systems

3. Stream processing ML systems use an embedded model to make predictions on
streaming data. They may also enrich their stream data with historical or contex-
tual precomputed features retrieved from a feature store;

Real-time, interactive applications differ from the other systems as they can use mod-
els as network hosted request/response services on model serving infrastructure. The
other systems use an embedded model, downloaded from the model registry, that
they invoke via a function call or an inter-process call. Real-time, interactive applica-
tions can also use an embedded model, if model-serving infrastructure is not avail-
able or if very low latency predictions are needed.

Embedded/Edge ML Systems

The other type of ML system, not covered in this book, is embedded/edge applications.
They typically use an embedded model and compute features from their rich input
data (often sensor data, such as images), typically without a feature store. For exam-
ple, Tesla Autopilot is a driver assist system that uses sensors from cameras and other
systems to help the ML models to make predictions about what driving actions to
take (steering direction, acceleration, braking, etc). Edge ML Systems are real-time
ML systems that run on resource-constrained network detached devices. For exam-
ple, Tetra Pak has an image classification system that runs on the factory floor, identi-
fying anomalies in cartons.

The following are some examples for the three different types of ML systems that use
a feature store:

Real-Time ML Systems
ChatGPT is an example of an interactive system that takes user input (a prompt)
and uses a LLM to generate a response, sent as an answer in text.

A credit-card fraud prevention system that takes a credit card transaction, and
then retrieves precomputed features about recent use of the credit card from a
feature store, then predicts whether the transaction is suspected of fraud or not,
letting the transaction proceed if it is not suspected of fraud.

Batch ML Systems
An air quality prediction dashboard shows air quality forecasts for a location. It is
built from predictions made by a batch ML system that uses observations of air
quality from sensors and weather data as features. A trained model can predict
air quality by using a weather forecast (input features) to predict air quality. This
will be the first example ML system that we build in Chapter 3.

Google Photos Search is an interactive system that uses predictions made by a
batch ML system. When your photos are uploaded to Google Photos, a classifica-

Machine Learning Systems with a Feature Store | 45

https://en.wikipedia.org/wiki/Tesla_Autopilot
https://chat.openai.com/auth/login
https://www.youtube.com/watch?v=dgBFShBuV4k
https://developers.google.com/machine-learning/practica/image-classification

tion model is used to tag parts of the photo. Those tags (things/people/places) are
indexed against the photo, so that you can later search in free-text on Google
Photos to find photos that match your search query. For example, if you type in
“bike”, it will show you your photos that have one or more bicycles in them.

Stream Processing ML Systems
Network intrusion detection is a real-time pattern matching problem that does
not require user input. You can use stream processing to extract features about all
traffic in a network, and then in your stream processing code, you can use a
model to predict anomalies such as network intrusion.

ML Frameworks and ML Infrastructure used in this book

In this book, we will build ML systems using programs written in Python. Given that
we aim to build ML systems, not the ML infrastructure underpinning it, we have to
make decisions about what platforms to cover in this book. Given space restrictions
in this book, we have to restrict ourselves to a set of well-motivated choices.

For programming, we chose Python as it is accessible to developers, the dominant
language of Data Science, and increasingly important in data engineering. We will use
open-source frameworks in Python, including Pandas and Polars for feature engi-
neering, Scikit-Learn and PyTorch for machine learning, and KServe for model serv-
ing. Python can be used for everything from creating features from raw data, to
model training, to developing user interfaces for our ML systems. We will also use
pre-trained LLMs - open-source foundation models. When appropriate, we will also
provide examples using other programming frameworks or languages widely used in
the Enterprise, such as Spark and DBT/SQL for scalable data processing, and stream
processing frameworks for real-time ML systems. That said, the example ML Systems
presented in this book were developed such that only knowledge of Python is a pre-
requisite.

To run our Python programs as pipelines in the cloud, we will use serverless plat-
forms, such as Modal and Github Actions. Both Github and Modal offer a free tier
(Model requires credit card registration, though) that will enable you to run the ML
pipelines introduced in this book. Again, the ML pipeline examples could easily be
ported to run on containerized runtimes such as Kubernetes or serverless runtimes,
such as AWS Lambda. Another free alternative is Github Actions. Currently, I think
that Modal has the best developer experience of available platforms, hence its inclu-
sion here.

For exploratory data analysis, model training, and other non-operational services, we
will use open-source Jupyter notebooks. Finally, for (serverless) user interfaces hosted
in the cloud, we will use Streamlit which also provides a free cloud tier. An alternative
would be Hugging Face Spaces and Gradio.

46 | Chapter 1:Building Machine Learning Systems

For ML infrastructure, we will use Hopsworks as serverless ML infrastructure, using
its feature store, model registry, and model serving platform to manage features and
models. Hopsworks is open-source, was the first open-source and enterprise feature
store, and has a free tier for its serverless platform. The other reason for using Hops-
works is that I am one of the developers of Hopsworks, so I can provide deeper
insights into its inner workings as a representative ML infrastructure platform. With
Hopsworks free serverless tier, that you can use to deploy and operate your ML sys-
tems without cost or the need to install or operate ML infrastructure platforms. That
said, given all of the examples are in common open-source Python frameworks, you
can easily modify the provided examples to replace Hopsworks with any combination
of an existing feature store, such as FEAST, model registry and model serving plat-
form, such as MLFlow.

Summary

In this chapter, we introduced ML systems with a feature store. We introduced the
main properties of ML systems, their architecture, and the ML pipelines that power
them. We introduced MLOps and its historical evolution as a set of best practices for
developing and evolving ML systems, and we presented a new architecture for ML
systems as feature, training, and inference (FTI) pipelines connected with a feature
store. In the next chapter, we will look closer at this new FTT architecture for building
ML systems, and how you can build ML systems faster and more reliably as connec-
ted FT1 pipelines.

Summary | 47

CHAPTER 2
Machine Learning Pipelines

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

In 1968, Edsger Dijkstra published an influential letter in the Communications of the
ACM entitled “Go To Statement Considered Harmful” to highlight the excessive use
of the GOTO statement in programming languages.' In 2024, the term “machine
learning pipeline” is often used as a catch-all term to describe how to productionize
ML models. However, there is currently widespread confusion about what a ML pipe-
line is and what it is not. What are the inputs and outputs to a ML pipeline? If some-
body says they built their ML system using a ML pipeline what information can you
glean from that? As such, the term ML pipelines, as it is currently used, could be
“considered harmful” when communicating about building ML systems. Instead, we
will strive to describe ML systems in terms of the actual pipelines used to build it. We
provide a rigorous definition of different ML pipelines and describe how to modula-

1 Edsger Dijkstra (March 1968). “Go To Statement Considered Harmful” (PDF). Communications of the ACM.
11 (3): 147-148. d0i:10.1145/362929.362947. S2CID 17469809

49

https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com

rize your ML system using ML pipelines that communicate via the feature store,
model registry, and model-serving infrastructure.

Let’s begin with pipelines. A pipeline is a computer program that has clearly defined
inputs and outputs (that is, it has a well-defined interface) and it either runs on a
schedule or continuously. A machine learning pipeline is any pipeline that outputs
ML artifacts used in a ML system. You can modularize a ML system by connecting
independent ML pipelines together - a feature pipeline to create feature data, a train-
ing data pipeline to create training data from feature data and labels, a model training
pipeline to read training data and create a model, and a batch inference pipeline that
reads feature (inference) data and a model and outputs predictions to some sink for
use by an Al-enabled application.

When we talk about ML pipelines, we talk abstractly about the pipelines that create
ML artifacts. We typically name a concrete ML pipeline after the ML artifact(s) they
create - a feature pipeline, a (model) training pipeline or an inference (predictions)
pipeline. Occasionally, you may name a ML pipeline based on how they modify a ML
artifact - such as a model or feature validation pipeline that asynchronously validates
a model or feature data, respectively. In this chapter, we cover many of the different
possible ML pipelines, but we will double click on the most important ML pipelines
for building a ML system - feature pipelines, training pipelines, and inference pipe-
lines. Three pipelines and the truth.

Building ML Systems with ML Pipelines

Before we develop our first ML pipelines, we will look at how we build ML systems.
ML systems are software systems, and software engineering methodologies help
guide you when building software systems. For example, DevOps is a software engi-
neering methodology that integrates software development and operations to build,
test, and release software faster using automation, versioning, source code control,
and separate development and production environments.

The first generation of software development processes for machine learning, such as
Microsoft’s Team Data Science Process, concentrated primarily on data collection and
modeling, but did not address how to build ML systems. As such, they were quickly
superseded by MLOps, which focuses on automation, versioning, and collaboration
between developers and operations to build ML systems. As discussed in Chapter 1,
modular ML systems are also key for MLOps.

Minimal Viable Prediction Service (MVPS)

We introduce here a minimal MLOps development methodology based on getting as
quickly as possible to a minimal viable ML system, or MVPS (minimal viable predic-
tion service). I followed this MVPS process in my course on building ML systems at

50 | Chapter2: Machine Learning Pipelines

https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview

KTH, and it has enabled students to get to a working ML system (that uses a novel
data source to solve a novel prediction problem) within a few days, at most.

ML artifacts include models, features, training data, experiment
tracking data, model deployments, predictions, prediction logs. ML
artifacts are stateful objects that are produced by ML pipelines and
are managed by your ML infrastructure services. All ML artifacts
are immutable, except for feature data, which is mutable as it is
updated over time, and model deployments that can be A/B tested
and upgraded. ML artifacts can be used by other internal ML pipe-
lines or by external clients of the ML system. For example, features
in a feature store are used in training pipelines and online infer-
ence pipelines by interactive applications.

MVPS Process
The MVPS development process, illustrated in Figure 2-1, starts with

« Identifying the prediction problem you want to solve
o The KPIs (key performance indicators) you want to improve
« The data sources you have available for use.
Once you have identified these three pillars that make up your ML system, you will

need to map your prediction problem to a ML proxy metric - a target you will opti-
mize in your ML system. This is often the most challenging step.

Building ML Systems with ML Pipelines | 51

mteratively develop your Minimal Viable Prediction Service (MVPS) | \

@ '
Prediction Problem

with Business KPIs Feature Training Inference
& Data Sources Pipeline Pipeline Pipeline User Interface

maps to and/or
Integration
(App, AP, etc)

ML proxy metric
(target) to optimize

\

Figure 2-1. The MVPS process for developing machine learning systems starts in the left-
most circle by identifying a prediction problem, how to measure its success using KPIs,
and how to map it onto a ML proxy metric. Based on the identified prediction problem
and data sources, you implement the feature/training/inference pipeline, as well as either
a user interface or integration with an external system that consumes the prediction. The
arcs connecting the circles represent the iterative nature of the development process,
where you often revise your pipelines based on user feedback and changes to require-
ments.

For example, you might want to predict items or content that a user is interested in.
For recommending items in an e-commerce store, the KPI could be increased con-
version as measured by users placing items in their shopping cart. For content, a
measurable business KPI could be to maximize user engagement, as measured by the
time a user spends on the service. Your goal as a data scientist or ML engineer is to
take the prediction problem and business KPIs and translate them into a ML system
that optimizes some ML metric (or target). The ML metric might be a direct match to
business KPI - the probability that a user places an item in a shopping cart, or the ML
metric might be proxy metric for the business KPI - the expected time a user will
engage with a recommended piece of content (a proxy for increasing user engage-
ment on the platform).

Once you have your prediction problem, KPIs, and ML target, you need to think
about how to create training data with features that have predictive power for your
target, based on your available data. You should start by enumerating and obtaining
access to the data sources that feed your ML system. You then need to understand the
data, so that you can effectively create features from that data. Exploratory data analy-

52 | (Chapter2: Machine Learning Pipelines

sis (EDA) is a first step you often take to gain an understanding of your data, its qual-
ity, and if there is a dependency between any features and the target variable. EDA
typically helps develop domain knowledge of the data, if you are not yet familiar with
the domain. It can help you identify which variables could or should be used or cre-
ated for a model and their predictive power for the model. You can start EDA by
examining your data and its distributions in a feature store (or Kaggle), and move on
performing EDA in notebooks if needed, visually analyzing the data.

Once you have a reasonable understanding of your data and the features you need,
you have to extract both the target observations (or labels) and features from your
data sources. This involves building feature pipelines from your data sources. The
output of your feature pipelines will be the features (and observations/labels) that are
stored in a feature store. If you are fortunate enough that your feature store already
contains the target(s) and/or features you need for your prediction problem, you can
skip implementing the feature pipelines.

From the feature store, you can create your training data, and then implement a
training pipeline to train your model that you save to a model registry. Finally, you
implement an inference pipeline that uses your model and new feature data to make
predictions, and add a UI or dashboard to create your minimal viable prediction ser-
vice. This MVPS development process is iterative, as you incrementally improve the
feature, training, and inference pipelines. You add testing, validation, and automa-
tion. You can later add different environments for development, staging, and produc-
tion.

The next (unavoidable) step is to identify the different technologies you will use to
build the feature, training, and inference pipelines, see Figure 2-2. We recommend
using a Kanban board for this. A Kanban board is a visual tool that will track work as
it moves through the MVPS process, featuring columns for different stages and cards
for individual tasks. Atlassian JIRA and Github projects are examples of Kanban
boards, widely used by developers.

Building ML Systems with ML Pipelines | 53

Where is your new and | What are your features & How do you make How are predictions
historical data? how are they created? predictions? consumed?
B pig @
Data Sources Feature Pipeline Training Pipeline Inference Pipeline Al-Enabled Apps

Figure 2-2. The Kanban board for our MVPS identifies the potential data sources, tech-
nologies used for ML pipelines, and types of consumers of predictions produced by ML
systems. Here, we show some of the possible data sources, frameworks and orchestrators
used in ML pipelines, and Al apps that consume predictions.

It is a good activity to fill in the MVPS Kanban board before starting your project to
get an overview of the ML system you are building. You should entitle the Kanban
board with the name of the prediction problem your ML system solves, then fill in
the data sources, the Al applications that will consume the predictions, and the tech-
nologies you will use to implement the feature/training/inference pipelines. You can
also annotate the different Kanban lanes with non-functional requirements, such as
the volume, velocity, and freshness requirements for the feature pipelines, or the SLO
(service-level objective) for the response times for an online inference pipeline. After
we have captured the requirements for our ML system, we move on to writing code.

Wanted: Modular Code for Machine Learning Pipelines

A successful ML system will need to be updated and maintained over time. That
means you will need to make any changes to your source code, such as:

1. The set of features computed or the data they are computed from;

2. How you train the model (its model architecture or hyperparameters) to improve
its performance or reduce any bias;

3. For batch ML systems, make predictions more (or less) frequently or change the
sink where you save your predictions;

4. For online ML systems, changes in the request latency or feature freshness
requirements.

54 | Chapter2: Machine Learning Pipelines

Now, imagine you had developed your system as a monolithic batch ML pipeline or a
couple of separated programs with non DRY (do not repeat yourself) source code.
How are you going to make sure the changes you make work correctly before you
deploy the changed code? How are you going to on-board a new developer to work
on the codebase?

The solution is to have a modular architecture and codebase. Modularity enables a
software system to have its components separated and recombined. For example,
source code can be factored into functions that each encapsulate a piece of work, and
those functions can then be reused in different parts of a codebase. You hide the piece
of code in the function (with all of its complexity) behind an interface. In Python, the
interface to a function is the function’s signature - its name, parameters, and return
type(s). This interface provides a contract to clients that use the function - you will
not change the function such that you break the expectations of clients. Modularity
and encapsulation enable you to reduce complexity in a software system by decom-
posing a system into more manageable parts and hiding the complexity of each part
behind an interface.

At the system architecture level, we can modularize the ML system into our 3 (or
more) pipelines - feature pipeline, training pipeline, and inference pipelines. The
pipeline is our abstraction and the interface is the input and output of each pipeline.
But that is not enough modularization to build a maintainable, understandable soft-
ware system.

Imagine we write a feature pipeline, computing data transformations in Pandas, in
Example 2-1.

Example 2-1. Example of non-modular feature engineering code in Pandas. The method
compute_features creates five different features that are not independently testable or
documented.

import pandas as pd
def compute_features(df: pd.Dataframe): -> pd.Dataframe

if config["region"] == "UK":
df["holidays"] = is_uk_holiday (df["year"], df[" week"])
else:

df["holidays"] = is_holiday (df["year"], df ["week"])
df["avg_3wk_spend"] = df["spend"].rolling (3).mean()
df["acquisition_cost"] = df["spend"]/df["signups"]
df["spend_shift_3weeks"] = df["spend"].shift(3)
df["special_featurel"] = compute_bespoke_feature(df)
return df

df = pd.read_parquet("my_table.parquet")
df = compute_features(df)

Building ML Systems with ML Pipelines | 55

This code snippet is not modular, as one function computes five features. It is difficult
to test the individual features computed in the above code. It is challenging to inde-
pendently update the individual features computed in the above code. It is difficult to
understand the features the function compute_features computes. It is difficult to
debug individual feature computations.

The team at DAGster behind the open-source Hamilton framework proposed a solu-
tion to refactor your Python source code as feature functions that update a DataFrame
containing the features. For each feature computed, you define a new feature func-
tion. The features are created in a DataFrame (Pandas, PySpark, or Polars) by apply-
ing the feature functions in the correct order, and that featurized DataFrame is then
used for training and inference.

We will follow the feature functions approach to build featurized DataFrames, but
our feature pipelines will store the DataFrame in a feature group in the feature store,
so that they can later be used for training and inference. Our approach to write mod-
ular feature engineering is to build a DataFrame containing feature data using feature
functions (featurized DataFrame), see Figure 2-3. Each featurized DataFrame is writ-
ten to a feature group in the feature store as a “‘commit” (append/update/delete). The
feature group stores the mutable set of features created over time. Training and Infer-
ence steps can later use a feature query service to read a consistent snapshot of feature
data from one or more feature groups to train a model or to make predictions,
respectively.

o
O Featurized Model
¢ Backfil : DataFrame Trainin Inference
: Backfill [e]
Data
write read read
v
commit 2024-01-01
commit 2024-01-02)
commit 2024-01-03 |-+ Feature Query Engine(s)
Feature Group

Feature Store

Figure 2-3. A Python-centric approach to writing feature pipelines is to to build a Data-
Frame and write it to a feature group in the feature store. The data can later be read
from feature groups by training and inference pipelines using a feature query engine or
service.

56 | Chapter2: Machine Learning Pipelines

https://github.com/DAGWorks-Inc/hamilton

The approach to modularize your feature logic is as follows. For every feature compu-
ted as a column in the Pandas DataFrame, we have some feature logic. For example,
here, we compute the column aquisition_cost as the spend divided by the number
of users who sign up to our service (signups):

df['aquisition_cost'] = df['spend'] / df['signups']

We refactor the logic used to compute the aquisition_cost into a feature function as
follows:

def aquisition_cost(spend: pd.Series, signups: pd.Series) -> pd.Series:
"""Acquisition cost per user is total spend divided by number of signups.
return spend / signups

At first glance, this increases the number of lines of code we have to write. However,
now we have a documented function that can potentially be reused by different pro-
grams. We can now write a unit test for our aquisition_cost feature, as follows:

@pytest.fixture
def get_spends(self) -> pd.DataFrame:
return pd.DataFrame([[20, 40], [5, 4], [4, 10],
columns=["spends", "signups", "aquisition_cost"])
def test_spend_per_signup (get_spends : Callable):
df=get_spends()
df["res"] = aquisition_cost(df["spends"), df["signups"])
pd.testing.assert_series_equal(df["res"], df["aquisition_cost"])
This unit test enforces a contract for how the acquisition_cost feature is computed
- if you or another developer changes how to compute the acquisition_cost, the
unit test below would fail, indicating its contract is broken for downstream clients
that use the feature. You can, of course, update the feature logic for acquisi
tion_cost, but that should typically be performed by creating a new version of the
feature, and the new version would require a new unit test. We will cover versioning
features in Chapter 4 on feature stores.

We will apply this method for modularizing feature logic code into feature functions
for all data transformations performed using Python in this book. In the next section,
we will see that building modular ML systems also requires you to know the type of
feature you are creating with a data transformation - a reusable feature, a model-
specific feature, or an on-demand feature.

Building ML Systems with ML Pipelines | 57

Normally, I would advocate using Google Colaboratory to run
notebooks, but in its current state in early 2024, you cannot easily
import Python modules from files external to your notebook. For
\ example, you can't store your .ipynb notebook in the same direc-
tory as a my_functions.py file in a Github repository, and then
checkout your Colaboratory notebook and call ‘import my_func-
tions’ in your notebook. However, this works fine with Jupyter
notebooks, so we will use Jupyter instead - it is best practice to
store feature functions in Python modules, so they can be inde-
pendently unit-tested and reused in different ML pipelines.

A Taxonomy for Data Transformations in ML Pipelines

Data transformations are key to ML systems. ML systems read in data and progres-
sively perform transformations on the data (cleaning, mapping, reformatting, com-
pressing) until the data is fitted to a model. ML systems also perform inference,
reading in new data to make predictions with, and apply the same transformations
that were used in training to create the features, and then making predictions on the
new data with the trained model.

In monolithic ML pipelines, exactly the same data transformations are executed in
the feature engineering, training, and inference phases, as they are performed in the
same program with the same code. In other words, in a monolithic ML pipeline, all
data transformations are essentially equivalent. However, when you break up your
monolithic ML pipeline by adding a feature store to the mix, you quickly see that not
all data transformations are equivalent - you can't just refactor your monolith to put
all data transformations in feature pipelines. Let’s examine why.

Firstly, the feature store should store features that can be reused across many models.
That means feature pipelines should create reusable features. This leads many Data
Scientists to the reasonable question - “should I store encoded feature data in the fea-
ture store?”. The answer, as we will examine in detail in the next section, is that we
should not, in general, store encoded feature data in the feature store. Feature encod-
ing is a data transformation that is parameterized by a model’s training dataset and
the output feature data is, therefore, not reusable across many models - it is specific to
that model (and its training data).

Another data transformation that needs to be performed outside of a feature pipeline
is a real-time data transformation on input only available at request-time. These on-
demand transformations are performed in online inference pipelines (for example,
with a Python user-defined function or a SQL query). But, what if we want to reuse
the same feature logic from the online inference pipeline to compute (or backfill) fea-
ture data in our feature pipeline using historical data?

58 | Chapter2: Machine Learning Pipelines

To address both of these challenges, we now introduce a taxonomy for data transfor-
mations in ML pipelines that use a feature store. The taxonomy organizes data trans-
formations into 3 different groups (model-dependent, model-independent, and on-
demand transformations), informing you in which ML pipeline(s) to implement the
data transformation. But, before looking at the taxonomy, we will first introduce data
transformations from data science that are parameterized by training data - the
encoding, scaling, and normalizing of feature data.

Feature Types and Model-Dependent Transformations

A data type for a variable in a programming language defines the set of valid opera-
tions on that variable - invalid operations will cause an error, either at compile time
or runtime. Feature types are a useful extension to data types for understanding the
set of valid operations on a variable in machine learning. For example, we can encode
a categorical variable (convert it from a string to a numerical representation), but we
cannot encode a numerical feature. Similarly, we can tokenize a string (categorical)
input to a LLM, but not a numerical feature. We can normalize a numerical variable,
but not a categorical variable. In Figure 2-4, you can see that in addition to the con-
ventional categorical variables (strings, enums, booleans) and numerical variables
(int, float, double), I included arrays (lists, vector embeddings) as feature types. A
vector embedding is a fixed-size array of either floating point numbers or integers,
and they are used to store a compressed representation of some higher dimensional
data. Lists and vector embeddings are now widely stored as features in feature stores -
and they have well defined sets of valid operations. For example, taking the 3 most
recent entries in a list is a valid operation on a list, as is indexing/querying a vector
embedding.

ATaxonomy for Data Transformations in ML Pipelines | 59

Feature types refer to the
O different types of variables that
E are used as inputs in a machine
learning model.

FEATURE TYPES

Categorical
///

l@ Embedding 31 List %7 Interval

’ J° Nominal

’ J:EJ Ordinal

’ [43] Ratio ‘

Figure 2-4. Data types in machine learning can be categorized into one of three different
feature types - categorical, numerical or an array. Within those categories, there are fur-
ther subclasses. Ordinal variables have a natural order (e.g., low/med/high), while nomi-
nal variables do not. Ratio variables have a defined zero-point, while interval variables
do not. Arrays can be a list of values or an embedding vector.

Feature types lack programming language support, instead they are supported in ML
frameworks and libraries. For example, in Python, you may use a ML framework
such as Scikit-Learn, TensorFlow, XGBoost, or PyTorch, and each framework has its
own implementation of the encoding/scaling/normalization transformations for their
own feature types.

As discussed earlier, the main challenge in structuring ML systems with feature
encoding is that they produce features that can be reused across multiple models. For
example, if T want to fine-tune a LLM on a dataset, and I have two candidate LLM
models (such as Llama 2 and Mistral), each LLM will have its own tokenizer. If I
tokenize the text in my dataset for Mistral, I can’t use the tokenized text to fine-tune a
model in Llama2, and vice versa. Similarly, although different models might want to
reuse the same numerical feature, they might want to encode or scale the same feature
differently. For example, gradient-descent models (deep learning) often work better
when numerical features have been normalized, but decision trees do not benefit
from normalization.

Another problem with these transformations on feature types is that if you were to
store encoded, centered, or scaled feature data in the feature store, it would not be
amenable to EDA. For example, if you normalized the annual income for citizens
from census data, you make the data impossible to understand - it is easier for a data
scientist to understand and visualize an income of $74,580 compared to its normal-
ized value of 0.5. Even worse, every time you write new encoded feature data to a fea-
ture store, you would have to recompute all of the data for that feature - as the mean/
standard deviation/set-of-categories may have changed with the new data. This could

60 | Chapter2: Machine Learning Pipelines

make even very small writes to the feature store very expensive (in what is called
write amplification - not a good thing).

The reason why encoding/scaling/normalization creates features that are not reusable
across other models is that they are parameterized by a training dataset. For example,
when we use min-max scaling to normalize a numerical feature, we need the min and
max values for that numerical feature in the training dataset. When we one-hot
encode a categorical feature (convert it into an array of bytes, with each category rep-
resented by a bit in the array, with a binary one for the variable’s category and binary
zeros for all the other categories) it is parameterized, by the set of all categories in the
training dataset. For this reason, we call these types of transformations model-
dependent transformations, the transformations are dependent on the model and its
training data. And we should not perform these transformations in feature pipelines,
before the feature store. So, we need to apply model-dependent transformations in
both the training and inference pipelines, and we need to make sure there is no skew
between the model-dependent transformations if the training and inference pipelines
are separate programs.

Reusable Features with Model-Independent Transformations

Data engineers are typically not very familiar with the model-dependent transforma-
tions introduced in the last section. Those transformations are specific to machine
learning and the goals of model-dependent transformations is to make feature data
compatible with a particular machine learning library or to improve model perfor-
mance (such as normalization of numerical features for gradient-descent based ML).

The types of transformations that data engineers are very familiar with that are
widely used in feature engineering are (windowed) aggregations (such as the
max/min of some numerical variable), windowed counts (for example, number of
clicks per day), and any transformations to create RFM (recency, frequency, mone-
tary) features. Transformations that create features that can be reused across many
models are called model-independent transformations. Model-independent transfor-
mations are applied once in batch or streaming feature pipelines, and the reusable
feature data produced by them is stored in the feature store, to be later used by down-
stream training and inference pipelines.

Real-Time Features with On-Demand Transformations

What if I have a real-time ML system and the data required to compute my feature is
only available as part of a user request? In that case, we will have to compute the fea-
ture in the online inference pipeline in what is called an on-demand transformation
that produces an on-demand (or real-time) feature. Ideally, we would like to also use
the same on-demand transformation in a feature pipeline to compute the same fea-
ture from historical data logged from your real-time ML system. We will see later in

ATaxonomy for Data Transformations in ML Pipelines | 61

Chapter 9 how we implement on-demand feature functions as user-defined functions
(UDFs) as either Python functions or Pandas UDFs.

The ML Transformation Taxonomy and ML Pipelines

Now that we have introduced the three different types of features produced by ML
pipelines, we can present a taxonomy for the data transformations that create reusa-
ble, model-specific, and real-time features in machine learning, see Figure 2-5. Our
taxonomy includes:

Model-independent transformations that produce reusable features that are
stored in a feature store;

Model-dependent transformations that produce features specific to a single
model;

On-demand transformations that require request-time data to be computed, but
can also be computed on historical data to backfill features to a feature store.

This ML Data Transformation Taxonomy
9 informs you about the 3 different types of
transformations that create features and

in which ML pipeline to perform the

transformations

Transformation

Model-Independent On-Demand Transformation

Data engineering transformations - Feature encoding/scaling/imputation. Need request-time data to be
aggregations, windowed count, RFM. Parameterized by the training data. computed online.
Produces: Reusable Features. Produces: Model-Specific Features. Produces: On-Demand Features.

Figure 2-5. The taxonomy of Data Transformations for Machine Learning that create
reusable features, model-specific features, and real-time features.

In Figure 2-6, we can see how the different data transformations in our taxonomy
map onto our three ML pipelines.

62

Chapter 2: Machine Learning Pipelines

Legend Feature Pipeline Training Pipeline Inference Pipeline
e e Y i) S
,,,,,,,, ! Al-enabled
: - : k 1+ applications
New | model training model inference —— Prediction b
Data)\ ! !
Model-Independent

Backfill I Model-Dependent] EEEEEEE | ModeI-Dependentl
Data ‘

R — u— ; -
|
| Feares labels | | Fealures Labels | Model Registry | | FeAures |
Feature R Feature Query Engine(s)
Group

Feature Store

Figure 2-6. Data Transformations for Machine Learning and the ML Pipelines they are
performed in.

Notice that model-independent transformations are only performed in feature pipe-
lines. However, model-dependent transformations are performed in both the training
and inference pipelines. On-demand transformations are also performed in two dif-
ferent pipelines - the (online) inference pipeline and the feature pipeline. As these
different pipelines are separate programs, you need to ensure that exactly the same
data transformation is applied in both ML pipelines - that is, there should be no skew
between the two different implementations. Any skew between transformations in
two different ML pipelines is very difficult to diagnose and can negatively affect your
model performance.

Now that we have introduced our classification of data transformations, we can dive
into more details on our three ML pipelines, starting with the feature pipeline.

Feature Pipelines

A feature pipeline is a program that orchestrates the execution of a dataflow graph of
model-independent and on-demand data transformations. These transformations
include extracting data from a source, data validation and cleaning, feature extrac-
tion, aggregation, dimensionality reduction (such as creating vector embeddings),
binning, feature crossing, and other feature engineering steps on input data to create
and/or update feature data, see Figure 2-7.

Feature Pipelines | 63

Feature Pipeline

Input Data —>‘ E % Vv H A F C F MIT}—> Features

Extract, Validate, Aggregate, Compress, Model-Independent Transformation

Figure 2-7. A feature pipeline performs data transformations on input data to create
reusable features that are stored in the feature store. It can be run against historical data
(backfilling) or new data that arrives in batches or as a stream of incoming data.

A feature pipeline is, however, more than just a program that executes data transfor-
mations. It has to be able to connect and read data from the data sources, it needs to
save its feature data to a feature store, and it also has non-functional requirements,
such as:

Backfilling or operational data
The same feature pipeline (or at least the same transformations) should be able to
create feature data using historical data and newly arrived data.

Scalability
Ensure the feature pipeline is provisioned with enough resources to process the
expected data volume.

Feature freshness
What is the maximum permissible age of precomputed feature data used by cli-
ents? Do feature freshness requirements mean you have to implement the feature
pipeline as a stream processing program or can it be a batch program?

Governance and security requirements
Where can the data be processed, who can process the data, will processing create
a tamper-proof audit log, will the features be organized and tagged for discovera-
bility?

Data quality guarantees
Does your feature pipeline minimize the amount of corrupt data that is written to
the feature store?

Let’s start with the source data for your feature pipeline - where does it come from?
Imagine developing a new feature pipeline and getting data from a source you've
never parsed before (for example, an existing table in a data warehouse). The table
may have been gathering data for a while, so you could run your data transformations

64 | Chapter2: Machine Learning Pipelines

against the historical data in the table to backfill feature data into your feature store. It
may also happen that you change the data transformations in your feature pipeline,
o you, again, want to backfill feature data from the source table (with your new fea-
ture transformations). Your data warehouse table will also probably have new data
available at some cadence (for example, hourly or daily). In this case, your feature
pipeline should be able to extract the new data from the table, compute the new fea-
ture data, and append or update the feature data in the feature store.

What does the feature data look like that is created by your feature pipeline? The out-
put feature data is typically in tabular format (one or more DataFrame(s) or table(s))
and it is typically stored in a feature group(s) in the feature store. Feature groups
store feature data as tables that are used by clients for both training and inference
(both online applications and batch programs).

Scalability and feature freshness requirements can be addressed by implementing a
feature pipeline in one of a number of different frameworks and languages. You have
to select the best technology based on your feature freshness requirements, your data
input sizes, and the skills available in your team. In Figure 2-8, we can see some of the
most popular frameworks used to feature pipelines. Batch programs are run on a
schedule (or in response to upstream events like data arrival), while stream process-
ing programs are run 24x7.

Real-Time

’

Apache Flink
bytewax ; Apache Beam
Quix streams ; Apache Spark Streaming
Smaller Data =~ - - - - === = + Bigger Data
Snowflake
! BigQuery
Pandas Polars i dbt

Redshift

Apache Spark

L
Batch

Figure 2-8. Popular data processing options for implementing your feature pipelines,
showing which technologies can process which data sizes and whether the programs are
batch or streaming pipelines.

Feature Pipelines | 65

Different data processing engines have different capabilities for (1) efficient process-
ing, (2) scalable processing, and (3) ease of development and operation. For example,
if your batch feature pipeline processes less than 1 GB per execution, Pandas is often
the easiest framework to start with - the code example from earlier in this chapter,
Example 2-1, creates features in Pandas. But for TB-scale workloads, Spark and SQL
are popular choices. dbt is a popular framework for executing feature pipelines
defined in SQL. dbt adds some modularity to SQL by enabling transformations to be
defined in separate files (dbt calls them models) as a form of pipeline. The pipelines
can then be chained together to implement a feature pipeline, with the final output a
table in a feature store.

When your ML system needs fresh feature data, you may need to use stream process-
ing to compute features. For stream processing feature pipelines, Bytewax or Quix
Streams are Python-native choices that are easy to get started with, but for large scale
Flink will give you the freshest features, as it processes events one-at-time as they
arrive, while Spark Streaming which is also scalable, and supports Python, has higher
latency than Flink due to it processing events in batches. We will cover more on batch
feature pipelines in Chapter 8, and streaming feature pipelines in Chapter 9.

Finally, feature pipelines tend not to have a very large number of parameters (com-
pared to training pipelines). They can be parameterized with the connection details
for the source data, by a start_time and end_time for backfilling feature data or the
latest_missing_data for operational model, with parameters for the feature engi-
neering steps (for example, a window size or the number of bins), with parameters
for optimizing feature data layout (partitioning or bucketing the feature data for
faster querying), and parameters for the pipeline program (number of CPUs, amount
of memory, number of workers, when and how to trigger the pipeline).

Training Pipelines

A training pipeline is a program that reads in training data (that is, feature data and
labels for supervised learning), applies model-dependent transformations to the
training data, trains a machine learning model using a ML framework, validates the
model for performance and absence of bias, see Figure 2-9. Training pipelines are
either run on-demand, when needed, or on a schedule (for example, new models are
re-deployed once per day or week).

Training pipelines can often have a large number of parameters, in particular for
deep-learning models. Examples of training parameters for fine-tuning a LLM
include the base LLM model, text encoding parameters, hyperparameters for the fine-
tuning method (such as LoRA or QLoRA) including quantization, batch size, gradi-
ent accumulation, resource estimation and limits (for both GPU and CPU
availability), and supervised fine-tuning dataset parameters (url or path, the type of
dataset (instruction, conversation, completion).

66 | Chapter2: Machine Learning Pipelines

Training Pipeline

Feature | op, HMDTH T H Vv P Model
Store

Select+Filter+Join (SFJ) features, Model-Dependent Transformation, Train, Validate

Figure 2-9. A training pipeline consists of a number of steps, from selecting the feature
data from the feature store (select, filter, join), to performing model-dependent transfor-
mations, to training the model, and to validating the model before it is saved to a model
registry.

The output of the training pipeline is the trained, validated model, and it is typically
saved to a model registry. For online models, the model can also be deployed directly
to model serving infrastructure.

For larger models managed by larger teams, the training pipeline can be further
decomposed into a training data pipeline, where you select, filter, and join feature data
from a feature store to create training data that you then apply model-dependent
transformations on, see Figure 2-10.

Training Data Pipeline

Feature

Store SFJ MDT Training Data

Select+Filter+Join (SFJ) features, Model-Dependent Transformation

Figure 2-10. A training data pipeline that selects and joins features from the feature
store, outputting training data to a file system or object store for later use in a model
training pipeline.

The training data is then typically stored to a file system or an object store (such as
S3) or a high performance file system backed by NVMe (nonvolatile memory

Training Pipelines | 67

express) drives, such as HopsFS. For example, when fine-tuning a LLM, even with the
high performance PyTorch data loader, they are often I/O bound - the training pipe-
line cannot read data fast enough from object store, so expensive GPUs are not fully
utilized. In this case, we often have a training data pipeline that stores training data to
high performance NVMe drives (currently ~8 GB/s throughput for modern NVMes
versus ~200 MB/s for AWS §3), which have high enough throughput to keep up with
the GPUs.

Model Validation Pipeline

Validated
Model H'ﬁ Model

Validate model performance and test for bias

Figure 2-11. A model validation pipeline loads a model (typically from a model registry)
and validates that the model has both satisfactory performance and is free from bias,
before saving the validated model back to the model registry, annotating that the model
has passed all tests.

You can also perform model validation in its own model validation pipeline, where the
model is asynchronously evaluated after it has been saved to the model registry. This
is useful when model validation is a computationally intensive step, and the model
training pipeline uses GPUs, such as in LLMs.

Once our model is trained, validated, and stored, it will also need to be deployed if it
is an online model (batch models are typically downloaded from a model registry
when the batch inference pipeline is run). Model deployment can be performed as
part of the training run, but often a model needs approval from a human before
deployment. In this case, you would have a separate model deployment pipeline, as
shown in Figure 2-12, where a model is copied from a model registry, along with the
online inference pipeline program and any other deployment artifacts, to model serv-
ing infrastructure.

68 | Chapter2: Machine Learning Pipelines

Model Deployment Pipeline

Model > Model
Deployment

Deploy a model to model-serving infrastructure

Figure 2-12. A model deployment pipeline deploys a model from a model registry to
model serving infrastructure.

The model deployment pipeline is typically run after the model has been approved,
but it can also be run on a schedule (for example, after daily or weekly retraining).
Model deployment often involves A/B tests, where the model is first deployed as a
shadow version and later promoted to the active version if it demonstrates good
enough performance and behavior.

Inference Pipelines

An inference pipeline is a program that reads in new feature data, applies model-
dependent transformations to the feature data, and makes predictions with the
trained model. Depending on whether the ML system is a real-time (interactive) ML
system or a batch ML system, your inference pipeline will be either a batch program
or a (Python) program invoked by a prediction request on the model serving infra-
structure.

In Figure 2-13, we can see a batch inference pipeline, which reads inference data from
the feature store, downloads the model from the model registry, and makes predic-
tions. Batch inference pipelines are typically implemented with DataFrames in either
Pandas, Polars, or Spark (although some data warehouses have recently added sup-
port for batch inference with UDFs).

Inference Pipelines | 69

Batch Inference Pipeline

Features, R MDT P Predictions
Model

Read (inference data as a DataFrame, model from Model Registry),
Model-Dependent Transformation, Predict (using DataFrame and model)

Figure 2-13. A batch inference pipeline reads the inference data from the feature store
into a DataFrame (Pandas or PySpark, typically) and downloads the model from the
model registry.

Batch inference pipelines are run on a schedule and make predictions for all the rows
in the DataFrame (or SQL table) using the model, and the predictions are typically
stored in a table in a database (sometimes called an inference store) from where con-
sumers use those predictions. An example of a batch inference ML system was a daily
surf height prediction service I wrote for a beach in Ireland (Lahinch), where I have
surfed a lot. It scrapes data from websites and publishes a dashboard on Github pages
every day.

Batch inference pipelines tend not to have a large number of parameters. Maybe they
will be parameterized by a start_time and end_time or the latest_missing_data
for inference data. Or maybe the inference data will be all the users or a subset of
users, in which case we identify the IDs of the users as a parameter. The details of the
sink for predictions may require user-supplied parameters.

Online inference pipelines are run in response to prediction requests. The prediction
requests typically contain ID(s) for the entities the prediction is being made for as
well as any runtime data required to compute features for the model. For example, in
an online retailer, the entity could be a customer and the ID could be their account
number, or an order reference number, or a session identity (if they are browsing the
website without an account). The online model is typically hosted on model serving
infrastructure or embedded in an online application. Online inference pipelines, see
Figure 2-14, merge precomputed features from the feature store with any on-demand
features to build a feature vector. Model-dependent transformations are then applied
to feature data before the transformed feature vector is passed to the model for pre-
diction.

70 | Chapter2: Machine Learning Pipelines

https://dl.acm.org/doi/abs/10.1145/1102351.1102366
https://dl.acm.org/doi/abs/10.1145/1102351.1102366
https://github.com/jimdowling/cjsurf
https://github.com/jimdowling/cjsurf

Feature
Store Online Inference Pipeline Model

|

v |
Prediction o
Request R %“ c %’ M HMDTP P PPredlctwn(s)

Read (user-input, features), Compute (on-demand features), Merge (precomputed & on-demand
features), Model-Dependent Transformations, Predict (using feature vector and model)

Figure 2-14. An online inference pipeline takes the request parameters and uses them to
read any precomputed features from the feature store, compute any on-demand features,
and merge them together into a feature vector that the model makes the prediction with.

The output of an online inference pipeline is a prediction (or a batch of predictions)
and that is returned to the requesting client and also logged for model monitoring.
Typically, you log the untransformed feature values along with the prediction.

Titanic survival as a ML System built with ML pipelines

We now introduce our first example ML system, built with our three ML pipelines,
using one of the best known ML problems - predicting the probability of a passenger
surviving the Titanic. The Titanic passenger survival data is a static dataset. An ML
model is trained and evaluated on the static dataset. That makes it a good introduc-
tory dataset for learning ML, as you skip the step of creating the training data. But we
want to move beyond the idea of just training models with a static data dump.

In Figure 2-15, we see the outline of our ML system in a Kanban board, including its
data sources, its final output (a dashboard), and the technologies used to implement
our ML system.

Titanic survival as a ML System built with ML pipelines | 71

— e HL Pipelines & hLops | output

g

Data Sources Feature Pipeline Training Pipeline Inference Pipeline Al-Enabled Apps

Figure 2-15. The MVPS Kanban board for our Titanic Passenger Survival ML system.

We will use the Titanic Survival dataset for historical data, shown in Figure 2-16.

passenger_id datetime age_binned fare gender Survived
<entity_id> <event_time> |<categorical> <numerical> <categorical> <categorical>
string datetime int int boolean boolean

1 1912-04-12 child 1 male False
2 1912-04-12 young_adult 2 male True
1309 1912-04-12 middle_aged 3 female True
1310 2024-02-01 pensioner 2 male False

v —
g _—
entity_id and event_time Features Label
columns are not features. Columns used as input Column used as a target
to the ML model. for supervised leamning.

Figure 2-16. Our Titanic Survival Dataset. The passenger_1id column uniquely identi-
fies each row - it is not a feature. We augmented the dataset with the datetime column -
the original dataset has 1309 rows with the date of the Titanic disaster, while each new
(simulated) row has the datetime of its creation.

We will then write a synthetic data creation function that creates new passengers for
the Titanic. The simulated passenger feature values are drawn from the same distri-
bution as the original dataset, so we will not have any problems with feature drift and

72 | Chapter2: Machine Learning Pipelines

any need to retrain our model. It’s an overly simplified example, but still a useful one
for getting started with dynamic data.

We will write both the historic and new feature data to a single feature group the fea-
ture store with a feature pipeline written in Python using Pandas, see Figure 2-16. We
will then schedule the feature pipeline to run once per day, creating one new passen-
ger for the Titanic for that day.

import pandas as pd
import hopsworks
BACKFILL=True
def get_new_synthetic_passenger():
see github repo for details
if BACKFILL==True:
df = pd.read_csv(“titantic.csv”)
Remove columns that are not predictive of passenger survival
else:
df = get_new_synthetic_passenger()
fs = hopsworks.login().get_feature_store()
fg = fs.get_or_create_feature_group(name="titanic”, version=1,
primary_keys=[‘1d’], description="Titanic passengers™)
fg.insert(df)

We will select the features we want to use in our model and create a feature view to
represent the input features and output labels/targets for our model:

def get_feature_view():
fs = hopsworks.login().get_feature_store()
fg = fs.get_feature_group(name="titanic”, version=1)
selected_features = fg.select_all()
return fv.get_or_create_feature_view(name="titanic”, version=1,
label=[‘survived’], description="Titanic passenger survival”)

We will use the feature view to create training data (the feature view will query the
feature data from the feature store) from the historical Titanic passenger survival
data. We will then train the model with XGBoost, a gradient-boosted decision tree
library in Python. We will store our trained model in a model registry.

fv = get_feature_view()
training_data = fv.training_data()
perform EDA

see github repo for details

You can discover important features obtained by joining data from a secondary data-
set.

import XGBoost

import pandas as pd

fv = get_feature_view()

X_train, X_test, y_train, y_test = fv.train_test_split(test_ratio=0.2)
model = XGBoost()

Titanic survival as a ML System built with ML pipelines | 73

model.fit(X_train, y_train)
save model to model registry

We will write a batch inference pipeline that will be scheduled to run once per day. It
will read any new simulated passengers from the feature store, download our trained
model from the model registry, and use the model to predict if the simulated passen-
gers survived or not, outputting its predictions to a new table (a feature group in the
feature store in this example) and logging predictions to a logging feature group in
the feature store. Finally, we will write a Dashboard in Python using Gradio to show
the model’s prediction for the most recent synthetic passenger - did they survive, and
also showing historical model prediction performance.

Model inference - make predictions on new data
y_preds = model.predict(X_test)

accuracy = classification_report(y_test, y_preds)
mr = hopsworks.login().get_model_registry()
mr.register_model(name="titanic”, accuracy)
mr.save_model(joblib.save(model))

This ML system solves what is called a counterfactual (what-if) prediction problem.
What if there were a passenger who was male, aged 49, and traveled third class on the
Titanic - what’s the probability he would have survived? We will finally also add an
interactive UI - making it also an interactive ML system using Python and Gradio.
This enables you to directly ask the model what-if questions about hypothetical pas-
senger survival probabilities.

Model inference - make predictions on new data
y_preds = model.predict(X_test)

accuracy = classification_report(y_test, y_preds)
mr = hopsworks.login().get_model_registry()
mr.register_model(name="titanic”, accuracy)
mr.save_model(joblib.save(model))

The full source code for this “Titanic passenger survival as a ML system” example is
found in the book’s source code repository in Github. To get started with this example
you will need to install the Hopsworks Python library. On Linux and Apple, this
involves calling:

pip install hopsworks

In Windows, you first need to install the twofish library, before you install the Hops-
works library. You will also need to create an account on app.hopsworks.ai and you
will also need a Hopsworks API key so that you can securely read from and write to
Hopsworks. You can either run the first notebook, and it will prompt you to create a
Hopsworks API key or you can follow the docs. Hopsworks offers a free-forever ser-
verless tier, with 35GB of free storage, more than enough to complete the projects in
this book.

74 | Chapter2: Machine Learning Pipelines

https://docs.hopsworks.ai/latest/user_guides/projects/api_key/create_api_key/

Summary

When building ML systems, we start with the ML pipelines and the data transforma-
tions performed in the feature, training, and inference pipelines. We introduced a
taxonomy for data transformations for ML pipelines based around reusable features
(created by model-independent transformations in feature pipelines), model-specific
features (created by model-dependent transformations in training/inference pipe-
lines), and real-time features (created by on-demand transformations in online infer-
ence pipelines, that can also be applied to historical data to create features in feature
pipelines). We closed out the chapter with our first ML system - a dynamic data ver-
sion of the Titanic passenger survival prediction problem. We showed how to build
both batch and interactive ML systems for Titanic passenger survival. In the next
chapter, we will go one step further and you will build a ML system for your neigh-
borhood or region. You will build an air quality prediction service for the neighbor-
hood you live in, and we will use the same frameworks used in the Titanic example -
Python, Pandas, XGBoost, and Gradio.

Summary | 75

CHAPTER 3

Your Friendly Neighborhood Air Quality
Forecasting Service

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

The first ML project we will build is an air quality forecasting service for a neighbor-
hood you care about. We will follow the minimal viable prediction service (MVPS)
process from Chapter 2 - divide et impera (divide and conquer). Your work will be a
public service built to survive, so please put some time and care into it, and your
community will love you for it. I have a personal interest in this project as I have two
boys with cystic fibrosis, a genetic disorder that primarily affects the lungs. They were
born on the same day, two years apart, and diagnosed the same day. Anyway, I think I
speak for the whole cystic fibrosis community in saying this would be a fantastic ser-
vice for us and many others'!

1 You can support cystic fibrosis research via the Cystic Fibrosis Foundation, https://www.cff.org

77

https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com

The prediction problem our ML system will solve is to predict the air quality for a
public air quality sensor close to your home or work, or wherever. A worldwide com-
munity of Internet of Things (IoT) hobbyists place sensors in their gardens and balc-
onies and publish air quality measurements on the Internet. Where I live in
Stockholm, there are over 30 public sensors, and in my home city of Dublin, there are
over 40. There is a world air quality index website where you can find a sensor on the
map to build your ML system on. Pick one that has both (1) historical data - we will
train a ML model on the historical data, so if you have a few years of data that is great,
and (2) produces reliable measurements (some sensors are turned off for periods of
time or malfunction). A reliable sensor will enable your ML system to continue to
collect measurement data, enabling you to retrain and improve the model as more
data becomes available. Even though you will provide a free public service to your
community, it won't cost you a penny - we will run the system on free serverless serv-
ices (GitHub and Hopsworks).

Air quality prediction is a pretty straightforward ML problem. We will model the pre-
diction problem as a regression problem - we predict the value of PM2.5. PM2.5 is a
fine particulate measure for particles that are 2.5 micrometers or less in diameter, and
high levels increase the risk of health problems like low birth weight, heart disease,
and lung disease. High levels of PM2.5 also reduces visibility, causing the air to
appear hazy. What are the features we will use to predict the level of PM2.5? PM2.5 is
correlated with wind speed/direction, temperature and precipitation, so we will use
weather forecast data to predict air quality as measured in PM2.5. This makes sense
because air quality is generally better when the wind blows in a particular direction -
if you live beside a busy road, wind direction is crucial. Air quality is often worse in
colder weather as cold air is denser and moves slower than warm air, and in cities
where more people may drive than bike when commuting. Even parts of India that
don’t experience cold winter weather have worse air quality in winter months.

But wait. You may have read that air quality forecasting is a solved problem. In 2024,
Microsoft Al built Aurora, a deep learning model that predicts air pollution for the
whole world. Microsoft’s use of Al was championed as a huge step forward compared
to the physical models of air quality, computed on high-performance computing
infrastructure by the European Unions Copernicus project. However, as of mid-2024,
if you examine the performance of Aurora in a city, such as Stockholm, you will see
its predictions are not very accurate compared to the actual air quality sensor read-
ings you can find on https://waqi.info. Your challenge is to build a ML system that
produces better air quality predictions than Aurora for the location of your chosen air
quality sensor at a fraction of its cost. In this project, better quality data and a deci-
sion tree ML model will outperform deep learning.

Finally, every project benefits from a wow factor. We will sprinkle some GenAI dust
on the project by making your air quality “friendly” by giving it a voice-driven UI
powered by an open-source LLM.

78 | Chapter3:Your Friendly Neighborhood Air Quality Forecasting Service

https://waqi.info/
https://www.nature.com/articles/d41586-024-01677-2
https://atmosphere.copernicus.eu/charts/packages/cams_air_quality/products/europe-air-quality-forecast-regulated
https://www.accuweather.com/en/se/stockholm/314929/air-quality-index/314929
https://aqicn.org/city/sweden/stockholm-hornsgatan-108-gata/#/w/sv
https://aqicn.org/city/sweden/stockholm-hornsgatan-108-gata/#/w/sv
https://waqi.info

ML System Overview

In my course at KTH, students built a unique ML system that solved a prediction
problem using a dynamic data source. But before they started their project, they had
to get it approved, and I found that the simplest way to do so was with a prediction
service card, see Table 3-1. The card is a slimmed down version of the Kanban board
from Chapter 2, omitting the implementation details.

Table 3-1. ML System Card for our Air Quality Forecasting Service

Dynamic Data Sources Prediction Problem Ul or API Monitoring

Air Quality Sensor Data: Daily forecast of the level of PM2.5 for A web page with graphs Hindcast graphs show
https://agicn.info the next 7 days at the position of an and a LLM-powered Ulin prediction performance
Weather Forecasts: existing air quality sensor. Python. of our model.

https://open-meteo.com/

The ML system card succinctly summarizes its key properties, including the data
sources and the prediction problem it solves. For example, with air quality, there are
many possible air quality prediction problems, such as the predicting PM10 levels
(larger particles that include dust from roads and construction sites), and NO2
(nitrogen dioxide) levels (pollution mostly from internal combustion engine vehi-
cles). The prediction service card also includes the data sources, useful as a feasibility
test that the data exists and is accessible for your prediction problem. You should also
define how the predictions produced by our ML system will be consumed - by a Ul
or API. A Ul is a very powerful tool to communicate the value of your model with
stakeholders, and it is now straightforward to build functional Uls in Python. In our
ML system, we will use LLMs to improve the accessibility of our service - you should
be able to ask the Air Quality Forecasting Service questions in natural language. And,
finally, you should outline how you will monitor the performance of your running
ML system to ensure it is performing as expected.

We will use open-source and free serverless services to build our ML system - GitHub
Actions/Pages and Hopsworks. We will write the following four Jupyter notebooks in
Python:

—_

. create feature groups to store our data and backfill them with historical data,

2. adaily feature pipeline to retrieve new data and store it in the feature store,

3. a training pipeline to train a XGBoost regression model and save it in the model
registry,

4. a batch inference pipeline to download the model and make predictions on new

feature data, read from the feature store, producing air quality forecast/hindcast
graphs.

ML System Overview | 79

https://aqicn.info
https://open-meteo.com/

We will also use a number of libraries in Python and other technologies to build the
system, including:

o REST APIs to read data from our data sources,

« Pandas for processing the data,

« Hopsworks to store feature data and models,

« GitHub Actions to schedule our notebooks to run daily, and

« GitHub Pages as a dashboard web page containing the forecasts/hindcast graphs.

We will also write a Streamlit Python application with a voice and text-powered Ul,
backed by the open-source Whisper transformer model that translates voice to text
and a fine-tuned version of the open-source Llama-3-8B LLM that translates from
text to function calls on our ML system.

That is a lot of technologies for our first project, but don't be overawed. Just like
much great music can be made with three chords, many great ML systems can be
made from a feature pipeline, a training pipeline, and an inference pipeline.

Air Quality Data

Thousands of hobbyists around the world have installed air quality sensors and made
their measurements publicly and freely available. You can locate many of these air
quality sensors with both historical and live data using the map on the World Air
Quality Index project, see Figure 3-1. The website is an aggregator of sensor data
from many sources, but as a community service it provides no guarantees on the data
quality.

80 | Chapter3:Your Friendly Neighborhood Air Quality Forecasting Service

https://waqi.info
https://waqi.info

& World's Air Pollution: Real-time Air Quality Index [o¥] | [share |

#

MAEREIN

ictyse [e ey =

Figure 3-1. On wagqi.info, you can navigate on the map to the location of the air quality
sensor you will use for this project. You will be redirected to https://agicn.org where you
find the sensor API details and historical data for the sensor.

In Figure 3-2, you can see that I have selected a sensor in Stockholm that has both live
and historical data available. I chose it because it is very close to the Hopsworks
office. You should pick a sensor either close to you or somewhere special to you.
When you click on the link to your sensor/location of choice, it will redirect you to
another website, https://aqicn.org - the website that provides real-time air pollution
index and API for 100+ countries.

AirQualityData | 81

https://waqi.info/
https://aqicn.org
https://aqicn.org

Stockholm Hornsgatan 108
Gata, Sweden

. -11.“ 2@_ S

“i ‘w‘,wﬂzh‘ours ago !
| 2 s (R T

3 f = -
/A*l! PV 5 ettt et
gl <) e .
NO, alNI it ameiil] —

OEEE O

Djurgarden

ast 12.m e
e ®
KA
vy
: &Click for more information
", e S : nast)
'. (O <3 ys= e

Figure 3-2. We can see here that there is available historical data for “past 12 months
PM2.5” for this sensor. A few small gaps in sensor readings like I have here is generally
ok.

In my case, for Stockholm Sédermalm, it redirected me to https://agicn.org/station/
sweden/stockholm-hornsgatan-108-gata. Scroll down the page and you will find a
button to download the historical data for that sensor, see Figure 3-4. If you can’t find
the download link for the historical measurements on your sensor’s webpage, you can
probably find them from here https://agicn.org/historical. If you still can’t find the
download link, pick another sensor. Unfortunately, as of mid 2024, there is no API
call available to download historical data, so you have to perform this step manually.

82 | Chapter3:Your Friendly Neighborhood Air Quality Forecasting Service

https://aqicn.org/station/sweden/stockholm-hornsgatan-108-gata
https://aqicn.org/station/sweden/stockholm-hornsgatan-108-gata
https://aqicn.org/historical

PMys | PMyo | NO, ‘ Download this data (CSV for

2024
I E——

Figure 3-3. On the URL with our sensor’s data at agicn.org, we can export the historical
data by clicking on the “Download this data (CSV format)” button.

Download the CSV (comma separated values) file. I renamed mine to stockholm-
hornsgatan-108.csv. For your sensor, you should rename the CSV file you down-
loaded if it has spaces or unusual characters. You should open the CSV file in a text
editor to check if its column names are as expected. Our backfilling Python program
will read the CSV file into a Pandas DataFrame and expect that the CSV file has a
header line and 2 of the columns are pm25 and date. If there are more columns, that
is ok. However, some files do not have a pm25 column - instead they have min/max/
median/stdev daily measurements for PM2.5. The easiest way to fix this is to just
rename the median column to pm25 in the header in your CSV file.

You can now create the GitHub repository for the project by forking the book’s Git-
Hub repository at https://github.com/featurestorebook/mlfs-book to your GitHub
account. If you don't have a GitHub account, you should create one - they are cur-
rently free. You should move your CSV file to the data/ directory in your forked
repository and then commit and push it to GitHub. I ran the following commands to
achieve this:

git clone git@GitHub.com:jimdowling/fsbook.git

cd fsbook/data

mv ~/Downloads/stockholm-hornsgatan-108.csv .

git add stockholm-hornsgatan-108.csv

git commit -am ‘Adding my historical sensor data’
git push

The CSV files are quite small (mine is 7.3KB), so there is no problem adding them to
GitHub. Files of GBs or larger are not suitable for storage in source-code repositories

AirQualityData | 83

https://github.com/featurestorebook/mlfs-book/

like GitHub? When working in Python, we strongly recommend that you create a
virtual environment for the book, using a Python dependency management frame-
work such as conda, poetry, virtualenv, or pipenv. The dependencies introduced for
our project can be installed in your virtual environment. See the book’s source code
repository for details on setting up a virtual environment and installing your Python
depen