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Preface

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the preface of the final book. The GitHub repo can be found at https://
github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

This book is the coursebook I would like to have had for ID2223, “Scalable Machine
Learning and Deep Learning”, a course I developed and taught at KTH Stockholm.
The course was, I believe, the first university course that taught students to build
complete machine learning (ML) systems using non-static data sources. By the end of
the course, the students built their own ML system they developed (around 2 weeks
work, in groups of 2) that included:

1. A unique data source that generated new data at some cadence,
2. A prediction problem they would solve with ML using the data source, and
3. A ML system that creates features from the data source, trains a model, makes

predictions on new data, visualizes the ML system output with a user interface
(interactive or dashboard), and a UI to monitor the performance of their ML sys‐
tem.

Charles Fyre, developer of the Full Stack Deep Learning course, said the following of
ID2223:
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In 2017, having a shared pipeline for training and prediction data that updated auto‐
matically and made models available as a UI and an API was a groundbreaking stack at
Uber. Now it’s stanard part of a well-done (ID2223) project.

Some of the examples of ML systems built in ID2223 are shown in Table P-1 below.
The ML systems built were a mix of ML systems built with deep learning and LLMs,
and more classical ML systems built with decision trees, such as XGBoost.

Table P-1. Example Machine Learning Systems

Prediction Problem Data Source(s)
Air Quality Prediction Air quality data, scraped from public sensors and public weather data
Water Height Prediction Water height data published from sensor readings along with weather data
Football Score Prediction Football score history and fantasy football data about players and teams
Electricity Demand Prediction Public electricity demand data, projected demand data, and weather data
Electricity Price Prediction Public electricity price data, projected price data, and weather data
Game of Thrones Tours Review
Response Generator

Tripadvisor reviews and responses

Bitcoin price prediction Twitter bitcoin sentiment using a Twitter API and a list of the 10,000 top crypto
accounts on Twitter

Overview of this book’s mission
The goal of this book is to introduce ML systems built with feature stores, and how to
build the pipelines (programs with well-defined inputs and outputs) for ML systems
while following MLOps best practices for the incremental development and improve‐
ment of your ML systems. We will deep dive into feature stores to help you under‐
stand how they can help manage your ML data for training models and making
predictions. You will acquire some practical skills on how to create and update reusa‐
ble features with model-independent transformations, as well as how to select, join,
and filter features to create point-in-time correct training data for models. You will
learn how to implement model-dependent feature transformations that are applied
consistently in both training and serving (such as text encoding for large language
models (LLMs)). You will learn how to build real-time ML systems with the help of
the feature store that provides history and context to (stateless) online applications.
You will also learn how to automate, test, and orchestrate ML pipelines. We will apply
the skills you acquire to build three different types of ML system: batch ML systems
(that make predictions on a schedule), real-time ML systems (that run 24x7 and
respond to requests with predictions), and LLM systems (that are personalized using
fined-tuning and retrieval augmented generation (RAG)). Finally, you will learn how
to govern and manage your ML assets to provide transparency and maintain compli‐
ance for your ML system.
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Target Reader of this Book
The ideal reader has a role in implementing a data science process and is interested in
operationalizing data science. Data engineers, data scientists, and machine learning
engineers will enjoy the exercises that will enable them to build the basic components
of a feature store.

Chief Digital Officers, Chief Digital Transformation Officers, and CTO’s will learn
how ML infrastructure, including feature stores, model registries, and model serving
infrastructure, enables the transition of machine learning models out of the lab and
into the enterprise. Readers should have a basic understanding of Python, databases,
and machine learning. Those intending to understand and perform the lab exercises
must have Python skills and basic Jupyter notebook familiarity.

The architectural skills you will learn in this book include:

• How to structure a ML system (batch, real-time, or LLM) as modular ML pipe‐
lines that can be independently developed, tested, and operated;

• How to ensure the consistency of feature data between offline training and online
operations;

• How to govern data in a feature store and promote collaboration between teams
with a feature store;

• How to follow MLOps principles of automated testing, versioning, and monitor‐
ing of features and models.

The modeling skills you will learn in this book include:

• How to train ML models from (time-series) tabular data in a feature store;
• How to personalize LLMs using fine-tuning and RAG;
• How to validate models using evaluation data from a feature store.

The ML engineering skills you will learn in this book include:

• How to identify and develop reusable model-independent features;
• How to identify and develop model-dependent features;
• How to identify and develop on-demand (real-time) features;
• How to validate feature data;
• How to test feature functions;
• And how to test ML pipelines.

The operational skills you will acquire in this book include:

Preface | xiii



• How to schedule feature pipelines and batch inference pipelines;
• How to deploy real-time models, connected to a feature store;
• How to log and monitor features and models with a feature store;
• How to develop user-interfaces to ML systems.
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Introduction

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the introduction of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Companies of all stages of maturity, size, and risk adversity are adopting machine
learning (ML). However, many of these companies are not actually generating value
from ML. In order to generate value from ML, you need to make the leap from train‐
ing ML models to building and operating ML systems. Training a ML model and
building a ML system are two very different activities. If training a model was akin to
building a one-off airplane, then building a ML system is more like building the air‐
craft factory, the airports, the airline, and attendant infrastructure needed to provide
an efficient air travel service. The Wright brothers may have built the first heavier-
than air airplane in 1903, but it wasn’t until 1922 that the first commercial airport was
opened. And it took until the 1930s until airports started to be built out around the
world.

In the early 2010s, when both machine learning and deep learning exploded in popu‐
larity, many companies became what are now known as “hyper-scale AI companies”,
as they built the first ML systems using massive computational and data storage
infrastructure. ML systems such as Google translate, TikTok’s video recommendation
engine, Uber’s taxi service, and ChatGPT were trained using vast amounts of data
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(petabytes using thousands of hard drives) on compute clusters with 1000s of servers.
Deep learning models additionally need hardware accelerators (often graphical pro‐
cessing units (GPUs)) to train models, further increasing the barrier to entry for most
organizations. After the models are trained, vast operational systems (including
GPUs) are needed to manage the data and users so that the models can make predic‐
tions for hundreds or thousands of simultaneous users.

These ML systems, built by the hyperscale AI companies, continue to generate enor‐
mous amounts of value for both their customers and owners. Fortunately, the AI
community has developed a culture of openness, and many of these companies have
shared the details about how they built and operated these systems. The first com‐
pany to do so in detail was Uber, who in September 2017, presented its platform for
building and operating ML systems, Michelangelo. Michelangelo was a new kind of
platform that managed the data and models for ML as well as the feature engineering
programs that create the data for both training and predictions. They called Michel‐
angelo’s data platform a feature store - a data platform that manages the feature data
(the input data to ML models) throughout the ML lifecycle—from training models to
making predictions with models. Now, in 2024, it is no exaggeration to say that all
Enterprises that build and run operational ML applications at scale use a feature store
to manage their data for AI. Michelangelo was more than a feature store, though, as it
also includes support for storing and serving models using a model registry and
model serving platform, respectively.

Naturally, many organizations have not had the same resources that were available to
Uber to build equivalent ML infrastructure. Many of them have been stuck at the
model training stage. Now, however, in 2024, the equivalent ML infrastructure has
become accessible, in the form of open-source and serverless feature stores, vector
databases, model registries, and model serving platforms. In this book, we will lever‐
age open-source and serverless ML infrastructure platforms to build ML systems. We
will learn the inner workings of the underlying ML infrastructure, but we will not
build that ML infrastructure—we will not start with learning Docker, Kubernetes, and
equivalent cloud infrastructure. You no longer need to build ML infrastructure to
start building ML systems. Instead, we will focus on building the software programs
that make up the ML system—the ML pipelines. We will work primarily in Python,
making this book widely accessible for Data Scientists, ML Engineers, Architects, and
Data Engineers.

From ML Models to MLOps to ML Systems
The value of a ML model is derived from the predictions it makes on new input data.
In most ML courses, books, and online tutorials, you are given a static dataset and
asked to train a model on some of the data and evaluate its performance using the
rest of the data (the holdout data). That is, you only make a prediction once on the
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holdout data—your model only generates value once. Many ML educators will say
something like: “we leave it as an exercise to the reader to productionize your ML
model“, without defining what is involved in model productionalization. The new
discipline of Machine learning operations (MLOps) attempts to fill in the gaps to pro‐
ductionization by defining processes for how to automate model (re-)training and
deployment, and automating testing to increase your confidence in the quality of
your data and models. This book fills in the gaps by making the leap from MLOps to
building ML systems. We will define the principles of MLOps (automated testing,
versioning, and monitoring), and apply those principles in many examples through‐
out the book. In contrast to much existing literature on MLOps, we will not cover
low-level technologies for building ML infrastructure, such as Docker and Terraform.
Instead, what we will coverthe programs that make up ML systems, the ML pipelines,
and the ML infrastructure they will run on in detail.

Supervised learning primer and what is a feature
anyway?
In this book, we will frequently refer to concepts from supervised learning. This sec‐
tion is a brief introduction to those concepts that you may safely skip if you already
know them.

Machine learning is concerned with making accurate predictions. Features are meas‐
urable properties of entities that we can use to make predictions. For example, if we
want to predict if a piece of fruit is an apple or an orange (apple or orange is the fruit’s
label), we could use the fruit’s color as a feature to help us predict the correct class of
fruit, see figure 1. This is a classification problem: given examples of fruit along with
their color and label, we want to classify a fruit as either an apple or orange using the
color feature. As we are only considering 2 classes of fruit, we can call this a binary
classification problem.
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Figure I-1. A feature is a measurable property of an entity that has predictive power for
the machine learning task. Here, the fruit’s color has predictive power of whether the
fruit is an apple or an orange.

The fruit’s color is a good feature to distinguish apples from oranges, because oranges
do not tend to be green and apples do not tend to be orange in color. Weight, in con‐
trast, is not a good feature as it is not predictive of whether the fruit is an apple or an
orange. “Roundness” of the fruit could be a good feature, but it is not easy to measure
—a feature should be a measurable property.

A supervised learning algorithm trains a machine learning model (often abbreviated
to just ‘model’), using lots of examples of apples and oranges along with the color of
each apple and orange, to predict the label “Apple” or “Orange” for new pieces of fruit
using only the new fruit’s color. However, color is a single value but rather measured
as 3 separate values, one value for each of the red, green, and blue (RGB) channels. As
our apples and oranges typically have ‘0’ for the blue channel, we can ignore the blue
channel, leaving us with two features: the red and green channel values. In figure 2,
we can see some examples of apples (green circles) and oranges (orange crosses), with
the red channel value plotted on the x-axis and the green channel value plotted on the
y-axis. We can see that an almost straight line can separate most of the apples from
the oranges. This line is called the decision boundary and we can compute it with a
linear model that minimizes the distance between the straight line and all of the cir‐
cles and crosses plotted in the diagram. The decision boundary that we learnt from
the data is most commonly called the (trained) model.
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Figure I-2. When we plot all of our example apples and oranges using the observed val‐
ues for the red and green color channels, we can see that most apples are on the left of the
decision boundary, and most oranges are on the right. Some apples and oranges are,
however, difficult to differentiate based only on their red and green channel colors.

The model can then be used to classify a new piece of a fruit as either an apple or
orange using its red and green channel values. If the fruit’s red and green channel val‐
ues place it on the left of the line, then it is an apple, otherwise it is an orange.

In figure 2, you can also see there are a small number of oranges that are not correctly
classified by the decision boundary. Our model could wrongly predict that an orange
is an apple. However, if the model predicts the fruit is an orange, it will be correct -
the fruit will be an orange. We can say that the model’s precision is 100% for oranges,
but is less than 100% for apples.

Another way to look at the model’s performance is to consider if the model predicts it
is an apple, and it is an apple - it will not be wrong. However, the model will not
always predict the fruit is an orange if the fruit is an orange. That is, the model’s recall
is 100% for apples. But if the model predicts an orange, it’s recall is less than 100%. In
machine learning, we often combine precision and recall in a single value called the
F1 Score, that can be used as one measure of the model’s performance. The F1 score is
the harmonic mean of precision and recall, and a value of 1.0 indicates perfect preci‐
sion and recall for the model. Precision, recall, and F1 scores are model performance
measures for classification problems.

Let’s complicate this simple model. What if we add red apples into the mix? Now, we
want our model to classify whether the fruit is an apple or orange - but we will have
both red and green apples, see figure 3.
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Figure I-3. The red apple complicates our prediction problem because there is no longer a
linear decision boundary between the apples and oranges using only color as a feature.

We can see that red apples also have zero for the blue channel, so we can ignore that
feature. However, in figure 4, we can see that the red examples are located in the bot‐
tom right hand corner of our chart, and our model (a linear decision boundary) is
broken—it would predict that red apples are oranges. Our model’s precision and
recall is now much worse.

Figure I-4. When we add red apples to our training examples, we can see that we can no
longer use a straight line to classify fruit as orange or apple. We now need a non-linear
decision boundary to separate apples from oranges, and in order to learn the decision
boundary, we need a more complex model (with more parameters), more training exam‐
ples, and m.

Our fruit classifier used examples of features and labels (apples or oranges) to train a
model (as a decision boundary). However, machine learning is not just used for clas‐
sification problems. It is also used to predict numerical values—regression problems.
An example of a regression problem would be to estimate the weight of an apple. For
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the regression problem of predicting the weight of an apple, two useful features could
be its diameter, and its green color channel value—dark green apples are heavier than
light green and red apples. The apple’s weight is called the target variable (we typically
use the term label for classification problems and target in regression problems).

For this regression problem, a supervised learning model could be trained using
examples of apples along with their green color channel value, diameter, and weight.
For new apples (not seen during training), our model, see figure 5, can predict the
fruit’s weight using its type, red channel value, green channel value, and diameter.

Figure I-5. This regression problem of predicting the weight of an apple can be solved
using a linear model that minimizes the mean-squared error

In this regression example, we don’t technically need the full power of supervised
learning yet—a simple linear model will work well. We can fit a straight line (that pre‐
dicts an apple’s weight using its green channel value and diameter) to the data points
by drawing the line on the chart such that it minimizes the distance between the line
and the data points (X1, X2, X3, X4, X5). For example, a common technique is to sum
together the distance between all the data points and the line in the mean absolute
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1 The source code for the supervised training of our fruit classifier is available on the book’s github repository
in chapter one. If you are new to machine learning it is a good exercise to run and understand this code.

error (MAE). We take the absolute value of the distance of the data points to the line,
because if we didn’t take the absolute value then the distance for X1 would be negative
and the distance for X2 would be positive, canceling each other out. Sometimes, we
have data points that are very far from the line, and we want the model to have a
larger error for those outliers—we want the model to perform better for outliers. For
this, we can sum the square of distances and then take the square root of the total.
This is called the root mean-squared error (RMSE). The MAE and RMSE are both
metrics used to help fit our linear regression model, but also to evaluate the perfor‐
mance of our regression model. Similar to our earlier classification example, if we
introduce more features to improve the performance of our regression model, we will
have to upgrade from our linear regression model to use a supervised learning regres‐
sion model that can perform better by learning non-linear relationships between the
features and the target.

Now that we have introduced supervised learning to solve classification and regres‐
sion problems, we can claim that supervised learning is concerned with extracting a
pattern from data (features and labels/targets) to a model, where the model’s value is
that it can used to perform inference (make predictions) on new (unlabeled) data
points (using only feature values). If the model performs well on the new data points
(that were not seen during training), we say the model has good generalization per‐
formance. We will later see that we always hold back some example data points dur‐
ing model training (a test set of examples that we don’t train the model on), so that we
can evaluate the model’s performance on unseen data.

Now we have introduced the core concepts in supervised learning1, let’s look at where
the data used to train our models comes from as well as the data that the model will
make predictions with.

The source code for the supervised training of our fruit classifier is available on the
book’s github repository in chapter one. If you are new to machine learning it is a
good exercise to run and understand this code.
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CHAPTER 1

Building Machine Learning Systems

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book. The GitHub repo can be found at https://
github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Imagine you have been tasked with producing a financial forecast for the upcoming
financial year. You decide to use machine learning as there is a lot of available data,
but, not unexpectedly, the data is spread across many different places—in spread‐
sheets and many different tables in the data warehouse. You have been working for
several years at the same organization, and this is not the first time you have been
given this task. Every year to date, the final output of your model has been a Power‐
Point presentation showing the financial projections. Each year, you trained a new
model, and your model made one prediction and you were finished with it. Each
year, you started effectively from scratch. You had to find the data sources (again), re-
request access to the data to create the features for your model, and then dig out the
Jupyter notebook from last year and update it with new data and improvements to
your model.

This year, however, you realize that it may be worth investing the time in building the
scaffolding for this project so that you have less work to do next year. So, instead of

23

https://github.com/featurestorebook/mlfs-book
https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com


delivering a powerpoint, you decide to build a dashboard. Instead of requesting one-
off access to the data, you build feature pipelines that extract the historical data from
its source(s) and compute the features (and labels) used in your model. You have an
insight that the feature pipelines can be used to do two things: compute both the his‐
torical features used to train your model and compute the features that will be used to
make predictions with your trained model. Now, after training your model, you can
connect it to the feature pipelines to make predictions that power your dashboard.
You thank yourself one year later when you only have to tweak this ML system by
adding/updating/removing features, and training a new model. The time you saved in
grunt data source, cleaning, and feature engineering, you now use to investigate new
ML frameworks and model architectures, resulting in a much improved financial
model, much to the delight of your boss.

The above example shows the difference between training a model to make a one-off
prediction on a static dataset versus building a batch ML system - a system that auto‐
mates reading from data sources, transforming data into features, training models,
performing inference on new data with the model, and updating a dashboard with
the model’s predictions. The dashboard is the value delivered by the model to stake‐
holders.

If you want a model to generate repeated value, the model should make predictions
more than once. That means, you are not finished when you have evaluated the mod‐
el’s performance on a test set drawn from your static dataset. Instead you will have to
build ML pipelines, programs that transform raw data into features, and feed features
to your model for easy retraining, and feed new features to your model so that it can
make predictions, generating more value with every prediction it makes.

You have embarked on the same journey from training models on static datasets to
building ML systems. The most important part of that journey is working with
dynamic data, see figure 1. This means moving from static data, such as the hand
curated datasets used in ML competitions found on Kaggle.com, to batch data, data‐
sets that are updated at some interval (hourly, daily, weekly, yearly), to real-time data.
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Figure 1-1. A ML system that only generates a one-off prediction on a static dataset gen‐
erates less business value than a ML system that can make predictions on a schedule
with batches of input data. ML systems that can make predictions with real-time data
are more technically challenging, but can create even more business value.

A ML system is a software system that manages the two main life cycles for a model:
training and inference (making predictions).

The Evolution of Machine Learning Systems
In the mid 2010s, revolutionary ML Systems started appearing in consumer Internet
applications, such as image tagging in Facebook and Google Translate. The first gen‐
eration of ML systems were either batch ML systems that make predictions on a
schedule, see figure 2, or interactive online ML systems that make predictions in
response to user actions, see figure 3.

Figure 1-2. A monolithic batch ML system that can run in either (1) training mode or
(2) inference mode.
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Batch ML systems have to ensure that the features created for training data and the
features created for batch inference are consistent. This can be achieved by building a
monolith batch pipeline program that is run in either training mode or inference
mode. The architecture ensures the same “Create Features” code is run in training
and inference.

In figure 3, you can see an interactive ML system that receives requests from clients
and responds with predictions in real-time. In this architecture, you need two sepa‐
rate systems - an offline training pipeline, and an online model serving service. You
can no longer ensure consistent features between training and serving by having a
single monolithic program. Early solutions to this problem involved versioning the
feature creation source code and ensuring both training and serving use the same
version, as in this Twitter presentation.

Figure 1-3. A (real-time) interactive ML system requires a separate offline training sys‐
tem from the online inference systems.

Notice that the online inference pipeline is stateless. We will see later than stateful
online inference pipelines require adding a feature store to this architecture.

Stateless online ML systems were, and still are, acceptable for some use cases. For
example, you can download a pre-trained large language model (LLM) and imple‐
ment a chatbot using only the online inference pipeline - you don’t need to imple‐
ment the training pipeline - which probably cost millions of dollars to run on 100s or
1000s of GPUs. The online inference pipeline can be as simple as a Python program
run on a web application server. The program will load the LLM into memory on
startup and make predictions with the LLM on user input data in response to predic‐
tion requests. You will need to tokenize the user input prompt before calling predict
on the model, but otherwise, you need almost no knowledge of ML to build the
online inference service using an LLM.

However, a personalized LLM (or any ML system with personalized predictions)
needs to integrate external data, in a process called retrieval augmentation generation
(RAG). RAG enables the LLM to enrich its input prompt with historical data or con‐
textual data. In addition to RAG, you can also collect the LLM responses and user
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responses (the prediction logs), and with them you will be able to generate more
training data to improve your LLM.

So, the general problem here is one of re–integration of the offline training system
and the online inference system to build a stateful integrated ML system. That general
problem has been addressed earlier by feature stores, introduced as a platform by
Uber in 2018. The feature store for machine learning has been the key ML infrastruc‐
ture platform in connecting the independent training and inference pipelines. One of
the main motivations for the adoption of feature stores by organizations has been that
they make state available to online inference programs, see figure 4. The feature store
enables input to an online model to be augmented with historical and context data by
low latency retrieval of precomputed feature data from the feature store. In general,
feature stores enable richer, personalized online models compared to stateless online
models. You can read more about feature stores in Chapters 4 and 5.

Figure 1-4. Many (real-time) interactive ML systems also require history and context to
make personalized predictions. The feature store enables personalized history and con‐
text to be retrieved at low latency as precomputed features for online models.

The evolution of the ML system architectures described here, from batch to stateless
real-time to real-time systems with a feature store, did not happen in a vacuum. It
happened within a new field of machine learning engineering called machine learn‐
ing operations (MLOps) that can be dated back to 2015, when authors at Google pub‐
lished a canonical paper entitled Hidden Technical Debt in Machine Learning
Systems. The paper cemented in ML developers minds the adage that only a small
percentage of the work in building ML systems was training models. Most of the
work is in data management and building and operating the ML system infrastruc‐
ture.
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1 Wikipedia states that “DevOps integrates and automates the work of software development (Dev) and IT
operations (Ops) as a means for improving and shortening the systems development life cycle.”

Inspired by the DevOps1 movement in software engineering, MLOps is a set of prac‐
tices and processes for building reliable and scalable ML systems that can be quickly
and incrementally developed, tested, and rolled out to production using automation
where possible. Some of the problems considered part of MLOps were addressed
already in this section, such as how to ensure consistent feature data between training
and inference. An O’Reilly book entitled “Machine Learning Design Patterns” pub‐
lished 30 patterns for building ML systems in 2020, and many problems related to
testing, versioning, and monitoring features, models, and data have been identified by
the MLOps community.

However, to date, there is no canonical MLOps architecture for ML systems. As of
early 2024, Google and Databricks have competing MLOps architectures containing
26 and 28 components, respectively. These MLOps architectures more closely resem‐
ble the outdated enterprise waterfall lifecycle development model that DevOps helped
replace, rather than the test-driven, start-small development culture of DevOps,
which promotes getting to a working system as fast as possible.

MLOps is currently in a phase similar to the early years of databases, where develop‐
ers were expected to understand the inner workings of magnetic disk drives in order
to retrieve data with high performance. Instead of saying what data to retrieve with
SQL, early database users had to tell databases how to read the data from disk. Simi‐
larly, most MLOps courses today assume that you need to build or deploy the ML
infrastructure needed to run ML systems. That is, you start by setting up continuous
integration systems, how to containerize your ML pipelines, how to automate the
deployment of your ML infrastructure with Terraform, and how Kubernetes works.
Then you only have to cover the remaining 20 other components identified for build‐
ing reliable ML systems, before you can build your first ML system.

In this book we will build on existing widely deployed ML infrastructure, including a
feature store to manage feature and label data for both training and inference, a
model registry as a store for trained models, and a model serving platform to deploy
online models behind a REST or gRPC API. In the examples covered in this book, we
will work with (free) serverless versions of these platforms, so you will not have to
learn infrastructure-as-code or Kubernetes to get started. Similarly, we will use ser‐
verless compute platforms so that you don’t even have to containerize your code,
meaning knowledge of Python is enough to be able to build the ML pipelines that will
make up the ML systems you build that will run on (free) serverless ML infrastruc‐
ture.
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The Anatomy of a Machine Learning System
One of the main challenges you will face in building ML systems is managing the data
that is used to train models and the data that models make predictions with. We can
categorize ML systems by how they process the new data that is used to make predic‐
tions with. Does the ML system make predictions on a schedule, for example, once
per day, or does it run 24x7, making predictions in response to user requests?

For example, Spotify weekly is a batch ML system, a recommendation engine, that,
once per week, predicts which songs you might want to listen to and updates them in
your playlist. In a batch ML system, the ML system reads a batch of data (all 575m+
users in the case of Spotify), and makes predictions using the trained recommender
ML model for all rows in the batch of data. The model takes all of the input features
(such as how often you listen to music and the genres of music you listen to) and, for
each user, makes a prediction of the 30 “best” songs for you for the upcoming week.
The predictions are then stored in a database (Cassandra) and when the user logs on,
the Spotify weekly recommendation list is downloaded from the database and shown
as recommendations in the user interfaces.

Tiktok’s recommendation engine, on the other hand, is famous for adapting its rec‐
ommendations in near real-time as you click and watch their short-form videos. This
is known as a real-time ML system. It predicts which videos to show you as you scroll
and watch videos. Andrej Karpathy, ex head of AI at Tesla, said Tiktoks’ recommen‐
dation engine “is scary good. It’s digital crack”. Tiktok described in its Monolith
research paper how it both retrains models very frequently and also how it updates
historical feature values used as input to models (what genre of video you viewed last,
how long you watched it for, etc) in near real-time with stream-processing (Apache
Flink). When Tiktok recommends videos to you, it uses a wealth of real-time data as
well as any query your enter. Iyour recent viewing behavior (clicks, swipes, likes),
your historical preferences, as well as recent context information (such as what videos
are trending right now for users like you). Managing all of this user data in real-time
and at scale is a significant engineering challenge. However, this engineering effort
was rewarded as Tiktok were the first online video platform to include real-time rec‐
ommendations, which gave them a competitive advantage over incumbents, enabling
them to build the world’s second most popular online video platform.

We will address head-on the data challenge in building ML systems. Your ML system
may need different types of data to operate - including user input data, historical data,
and context data. For example, a real-time ML system that predicts the validity of an
insurance claim will take as input the details of the claim, but will augment this with
the claimant’s history and policy details, and further enrich this with context infor‐
mation about the current rate of claims for this particular policy. This ML system is a
long way from the starting point where a Data Scientist received a static data dump
and was asked if she could improve the detection of bogus insurance claims.
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Types of Machine Learning
The main types of machine learning used in ML systems are supervised learning,
unsupervised learning, self-supervised learning, semi-supervised learning, reinforce‐
ment learning, and in-context learning.

Supervised Learning
In supervised learning, you train a model with data containing features and labels.
Each row in a training dataset contains a set of input feature values and a label
(the outcome, given the input feature values). Supervised ML algorithms learn
relationships between the labels (also called the target variable) and the input fea‐
ture values. Supervised ML is used to solve classification problems, where the ML
system will answer yes-or-no questions (is there a hotdog in this photo?) or make
a multiclass classification (what type of hotdog is this?). Supervised ML is also
used to solve regression problems, where the model predicts a numeric value
using the input feature values (estimate the price of this apartment, given input
features such as its area, condition, and location). Finally, supervised ML is also
used to fine-tune chatbots using open-source large language models (LLMs). For
example, if you train a chatbot with questions (features) and answers (labels)
from the legal profession, your chatbot can be fine-tuned so that it talks like a
lawyer.

Unsupervised Learning
In contrast, unsupervised learning algorithms learn from input features without
any labels. For example, you could train an anomaly detection system with
credit-card transactions, and if an anomalous credit-card transaction arrives, you
could flag it as suspected for fraud.

Semi-supervised Learning
In semi-supervised learning, you train a model with a dataset that includes both
labeled and unlabeled data, usually mostly unlabeled. Semi-supervised ML com‐
bines supervised and unsupervised machine learning methods. Continuing our
credit-card fraud detection example, if we had a small number of examples of
fraudulent credit card transactions, we could use semi-supervised methods to
improve our anomaly detection algorithm with examples of bad transactions. In
credit-card fraud, there is typically an extreme imbalance between “good” and
“bad” transactions (<0.001%), making it impractical to train a fraud detection
model with only supervised ML.

Self-supervised Learning
Self-supervised learning involves generating a labeled dataset from a fully unla‐
beled one. The main method to generate the labeled dataset is masking. For natu‐
ral language processing (NLP), you can provide a piece of text and mask out
individual words (Masked-Language Modeling) and train a model to predict the
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missing word. Here, we know the label (the missing word), so we can train the
model using any supervised learning algorithm. In NLP, you can also mask out
entire sentences with next sentence prediction that can teach a model to under‐
stand longer-term dependencies across sentences. The language model BERT
uses both masked-language modeling and next sentence prediction for training.
Similarly, with image classification, you can mask out a (randomly chosen) small
part of each image and then train a model to reproduce the original image with
as high fidelity as possible.

Reinforcement Learning
Reinforcement learning (RL) is another type of ML algorithm (not covered in this
book). RL is concerned with learning how to make optimal decisions. In RL, an
agent learns the best actions to take in an environment, by the environment giv‐
ing the agent a reward after each action the agent executes. The agent then adapts
its behavior to either maximize the rewards it receives (or minimizes the costs)
for each action.

In-context Learning
There is also a very recent type of ML found in large language models (LLMs)
called in-context learning. Supervised ML, unsupervised ML, semi-supervised
ML, and reinforcement learning can only learn with data they are trained on.
That is, they can only solve tasks that they are trained to solve. However, LLMs
that are large enough exhibit a different type of machine learning - in-context
learning (ICL) - the ability to learn to solve new tasks by providing “training”
examples in the prompt (input) to the LLM. LLMs can exhibit ICL even though
they are trained only with the objective of next token prediction. The newly
learnt skill is forgotten directly after the LLM sends its response - its model
weights are not updated as they would be during training.

ChatGPT is a good example of a ML system that uses a combination of different types
of ML. ChatGPT includes a LLM trained use self-supervised learning to train the
foundation model, supervised learning to fine-tune the foundation model to create a
task-specific model (such as a chatbot), and reinforcement learning (with human
feedback) to align the task-specific model with human values (e.g., to remove bias
and vulgarity in a chatbot). Finally, LLMs can learn from examples in the input
prompt using in-context learning.

Data Sources
Data for ML systems can, in principle, come from any available data source. That
said, some data sources and data formats are more popular as input to ML systems. In
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2 Enterprise computing refers to the information storage and processing platforms that businesses use for oper‐
ations, analytics, and data science.

this section, we introduce the data sources most commonly encountered in Enter‐
prise computing.2

Tabular data
Tabular data is data stored as tables containing columns and rows, typically in a data‐
base. There are two main types of databases that are sources for data for machine
learning:

• Relational databases or NoSQL databases, collectively known as row-oriented
data stores as their storage layout is optimized for reading and writing rows of
data;

• Analytical databases such as data warehouses and data lakehouses, collectively
known as column-oriented data stores as their storage layout is optimized for
reading and processing columns of data (such as computing the min/max/aver‐
age/sum for a column).

Row-oriented databases are operational data stores that power a wide variety of appli‐
cations that store their records (or rows) row-wise on disk or in-memory. Relational
databases (such as MySQL or Postgres) store their data as rows as pages of data along
with indexes (such as B-Trees and hash indexes) to efficiently find data. NoSQL data
stores (such as Cassandra, and RocksDB) typically use log-structured merge trees
(LSM Trees) to store their data along with indexes (such as Bloom filters) to effi‐
ciently find data. Some data stores (such as MongoDB) combine both B-Trees and
LSM Trees. Some row-oriented databases are distributed, scaling out to run on many
servers, some as servers on a single host, and some are embedded databases that are a
library that can be included with your application.

From a developer perspective, the most important property of row-oriented data‐
bases is the data format you use to read and write data. Popular data formats include
SQL and Object-Relational Mappers (ORM) for SQL (MySQL, Postgres), key-value
pairs (Cassandra, RockDB), or JSON documents (MongoDB).

Analytical (or columnar) data stores are historical stores of record used for analysis of
potentially large volumes of data. In Enterprises, data warehouses collect all the data
stored in all operational data stores. Programs called data pipelines extract data from
the operational data stores, transform the data into a format suitable for analysis and
machine learning, and load the transformed data into the data warehouse or lake‐
house. If the transformations are performed in the data pipeline (for example, a Spark
or Airflow program) itself, then the data pipeline is called an ETL pipeline (extract,

32 | Chapter 1: Building Machine Learning Systems



transform, load). If the data pipeline first loads the data in the Data Warehouse and
then performs the transformations in the Data Warehouse itself (using SQL), then it
is called an ELT pipeline (extract, load, transform). Spark is a popular framework for
writing ETL pipelines and DBT is a popular framework for writing ELT pipelines.

Columnar data stores are the most common data source for historical data for ML
systems in Enterprises. Many data transformations for creating features, such as
aggregations and feature extraction, can be efficiently and scalably implemented in
DBT/SQL or Spark on data stored in data warehouses. Python frameworks for data
transformations, such as Pandas 2+ and Polars, are also popular platforms for feature
engineering with data of more reasonable scale (GBs, not TBs or more).

A Lakehouse is a combination of (1) tables stored as columnar files in a data lake
(object store or distributed file system) and (2) data processing that ensures ACID
operations on the table for reading and writing that store columnar data. They are
collectively known as Table File Formats. There are 3 popular open-source table for‐
mats: Apache Iceberg, Apache Hudi, and Delta Lake. All 3 provide similar functional‐
ity, enabling you to update the tabular data, delete rows from tables, and
incrementally add data to tables. You no longer need to read up the old data, update
it, and write back your new version of the table. Instead you can just append or upsert
(insert or update) data into your tables.

Unstructured Data
Tabular data and graph data, stored in graph databases, are often referred to as struc‐
tured data. Every other type of data is typically thrown into the antonymous bucket
called unstructured data—text (pdfs, docs, html, etc), image, video, audio, and sensor-
generated data are all considered unstructured data. The main characteristic of
unstructured data is that it is typically stored in files, sometimes very large files of
GBs or more, in low cost data stores, such as object stores or distributed file systems.
The one type of data that can be either structured or unstructured is text data. If the
text data is stored in files, such as markdown files, it is considered unstructured data.
However, if the text is stored as columns in tables, it is considered structured data.
Most text data in the Enterprise is unstructured and stored in files.

Deep learning has made huge strides in solving prediction problems with unstruc‐
tured data. Image tagging services, self-driving cars, voice transcription systems, and
many other ML systems are all trained with vast amounts of unstructured data. Apart
from text data, this book, however, focuses on ML systems built with structured data
that comes from feature stores.
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Event Data
An event bus is a data platform that has become popular as (1) a store for real-time
event data and (2) a data bus for storing data that is being moved or copied between
different data stores. In this book, we will mostly consider event buses as the former, a
data source for real-time ML systems. For example, at the consumer tech giants, every
click you make on their website or mobile app, and every piece of data you enter is
typically first sent to a massively scalable distributed event bus, such as Apache Kafka,
from where real-time ML systems can use that data to create fresh features for models
powering their ML-enabled applications.

API-Provided Data
More and more data is being stored and processed in Software-as-a-Service (SaaS)
systems, and it is, therefore, becoming more important to be able to retrieve or scrape
data from such services using their public application programming interfaces
(APIs). Similarly, as society is becoming increasingly digitized, more data is becoming
available on websites that can be scraped and used as a data source for ML systems.
There are low-code software systems that know about the APIs to popular SaaS plat‐
forms (like Salesforce and Hubspot) and can pull data from those platforms into data
warehouses, such as Airbyte. But sometimes, external APIs or websites will not have
data integration support, and you will need to scrape the data. In Chapter 2, we will
build an Air Quality Prediction ML System that scrapes data from the closest public
Air Quality Sensor data source to where you live (there are tens of thousands of these
available on the Internet today - probably one closer to you than you imagine).

Ethics and Laws for Data Sources
In addition to understanding how to collect data from your data sources, you also
have to understand the laws, ethics, and organizational policies that govern this data.
Does the data contain personally identifiable information (PII data)? Is use of the data
for machine learning restricted by laws, such as GDPR or CCAP or the EU AI act?
What are your organization’s policies for the use of this data? It is also your responsi‐
bility as an individual to understand if the ML system you are building is ethical and
that you personally follow a code of ethics for AI.

Incremental Datasets
Most of the challenges in building and operating ML systems are in managing the
data. Despite this, data scientists have traditionally been taught machine learning with
the simplest form of data: immutable datasets. Most machine learning courses and
books point you to a dataset as a static file. If the file is small (a few GBs at most), the
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3 Parquet files store tabular data in a columnar format - the values for each column are stored together, ena‐
bling faster aggregate operations at the column level (such as the average value for a numerical column) and
better compression, with both dictionary and run-length encoding.

4 The titanic dataset is a well-known example of a binary classification problem in machine learning, where you
have to train a model to predict if a given passenger will survive or not.

file often contains comma-separated values (csv), and if the data is large (GBs to
TBs), a more efficient file format, such as Parquet3 is used.

For example, the well-known titanic passenger dataset4 consists of the following files:

train.csv
the training set you should use to train your model;

test.csv
the test set you should use to evaluate the performance of your trained model.

The dataset is static, but you need to perform some basic feature engineering. There
are some missing values, and some columns have no predictive power for the prob‐
lem of predicting whether a given passenger survives the Titanic or not (such as the
passenger ID and the passenger name). The Titanic dataset is popular as you can
learn the basics of data cleaning, transforming data into features, and fitting a model
to the data.

Immutable files are not suitable as the data layer of record in an
enterprise environment where GDPR (the EU’s General Data Pro‐
tection Regulation) and CCPA (California Consumer Privacy Act)
require that users are allowed to have their data deleted, updated,
and its usage and provenance tracked. In recent years, open-source
table formats for data lakes have appeared, such as Apache Iceberg,
Apache Hudi, and Delta Laker, that support mutable datasets (that
work with GDPR and CCPA) that are designed to work at massive
scale (PBs in size) on low cost storage (object stores and distributed
file systems).

In introductory ML courses, you do not typically learn about incremental datasets. An
incremental dataset is a dataset that supports efficient appends, updates, and dele‐
tions. ML systems continually produce new data - whether once per year, day, hour,
minute, or even second. ML systems need to support incremental datasets. In ML
systems built with time-series data (for example, online consumer data), that data
may also have freshness constraints, such that you need to periodically retrain your
model so that it does not degrade in performance. So, we need to accumulate histori‐
cal data in incremental datasets so that, over time, more training data becomes avail‐
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able for re-training models to ensure high performance for our ML systems - models
degrade over time if they are not periodically retrained using recent (fresh) data.

Incremental datasets introduce challenges for feature engineering. Some of the data
transformations used to create features are parametrized by all of the feature data,
such as feature encoding and scaling. This means that if we want to store encoded
feature data in an incremental dataset, every time we write new feature data, we will
have to re-encode all the feature data for that feature, causing massive write amplifica‐
tion. Write amplification is when writes (appends or updates) take increasingly longer
as the dataset increases in size - it is not a good system property. That said, there are
many data transformations in machine learning, traditionally called “data preparation
steps”, that are compatible with incremental datasets, such as aggregations, binning,
and dimensionality reduction. In Chapters 6 and 7, we categorize data transforma‐
tions for feature engineering as either (1) data transformations that create features
stored in incremental datasets that are reusable across many models, and (2) data
transformations that are not stored in incremental datasets and create features that
are specific to one model.

What is an incremental dataset? In this book, we will not use the tried and tested and
failed method of creating incremental datasets by storing the new data as a separate
immutable file (titanic_passengers_v1.csv,..., titanic_passengers_vN.csv). Nor will we
introduce write amplification by reading up the existing dataset, updating the dataset,
and saving it back (for example, as parquet files). Instead, we will use a feature store
and we append, update, and delete data in tables called feature groups. A detailed
introduction to feature stores can be found in Chapters 4 and 5, but we will start
using them already in Chapter 2.

The key technology for maintaining incremental datasets for ML is the pipeline. Pipe‐
lines collect and process the data that will be used to train our ML models. The pipe‐
line is also what we will use to periodically retrain models. And we even use pipelines
to automate the predictions produced by the batch ML systems that run on a sched‐
ule, for example, daily or hourly.

What is a ML Pipeline ?
A pipeline is a program that has well-defined inputs and outputs and is run either on
a schedule or 24x7. ML Pipelines is a widely used term in ML engineering that loosely
refers to the pipelines that are used to build and operate ML systems. However, a
problem with the term ML pipeline is that it is not clear what the input and output to
a ML pipeline is. Is the input raw data or training data? Is the model part of input or
the output? In this book, we will use the term ML pipeline to refer collectively to any
pipeline in a ML system. We will not use the term ML pipeline to refer to a specific
stage in a ML system, such as feature engineering, model training, or inference.
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An important property of ML systems is modularity. Modularity involves structuring
your ML system such that its functionality is separated into independent components
that can be independently run and tested. Modules should be kept small and easy to
understand/document. Modules should enable reuse of functionality in ML systems,
clear separation of work between teams, and better communication between those
teams through shared understanding of the concepts and interfaces in the ML sys‐
tem.

In figure 5, we can see an example of a modular ML system that has factored its func‐
tionality into three independent ML pipelines: a feature pipeline, a training pipeline,
and an inference pipeline.

Figure 1-5. A ML pipeline has well-defined inputs and outputs. The outputs of ML pipe‐
lines can be inputs to other ML pipelines or to external ML Systems that use the predic‐
tions and prediction logs to make them “AI-enabled”.

The three different pipelines have clear inputs and outputs and can be developed and
operated independently:

• A feature pipeline takes data as input and produces reusable features as output.
• A training pipeline takes features as input trains a model and outputs the trained

model.
• An inference pipeline takes features and a model as input and outputs predictions

and prediction logs.

The feature pipeline is similar to an ETL or ELT data pipeline, except that its data
transformation steps produce output data in a format that is suitable for training
models. There are many common data transformation steps between data pipelines
and feature pipelines, such as computing aggregations, but many transformations are
specific to ML, such as dimensionality reduction and data validation checks specific
to ML. Feature pipelines typically do not need GPUs, but run instead on commodity
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CPUs. They are often written in frameworks such as DBT/SQL, Apache Spark,
Apache Flink, Pandas, and Polars, and they are scheduled to run at defined intervals
by some orchestration platform (such as Apache Airflow, Dagster, Modal, or Mage).
Feature pipelines can also be streaming applications that run 24x7 and create fresh
features for use in real-time ML systems. The output of feature pipelines are features
that can be reused in one or model models. To ensure features are reusable, we do not
encode or scale feature values in feature pipelines. Instead these transformations
(called model-dependent transformations as they are parameterized by the training
dataset), are performed consistently in the training and inference pipelines.

The training pipeline is typically a Python program that takes features (and labels for
supervised learning) as input, trains a model (using GPUs for deep learning), and
saves the model in a model registry. Before saving the model in the model registry, it
is important to additionally validate that the model has good performance, is not
biased against potential groups of users, and, in general, does nothing bad.

The inference pipeline is either a batch program or an online service, depending on
whether the ML system is a batch system or a real-time system. For batch ML sys‐
tems, the inference pipeline typically reads features computed by the feature pipeline
and the model produced by the training pipeline, and then outputs the model’s pre‐
dictions for the input feature values. Batch inference pipelines are typically imple‐
mented in Python using either PySpark or Pandas/Polars, depending on the size of
input data expected (PySpark is used when the input data is too large to fit on a single
server). For real-time ML systems, the online inference pipeline is a program hosted
as a service in model serving infrastructure. The model serving infrastructure receives
user requests and invokes the online inference pipeline that can compute features
using on user input data and enrich using pre-computed features and even features
computed from external APIs. Online inference pipelines produce predictions that
are sent as responses to client requests as well as prediction log entries containing the
input feature values and the output prediction. Prediction logs are used to monitor
the performance of ML systems and to provide logs for debugging ML systems.
Another less common type of real-time ML system is a stream-processing system that
uses a trained model to make predictions on features computed from streaming input
data.

Building our first minimal viable ML system using feature, training, and inference
pipelines is only the first step. You now need to iteratively improve this system to
make it a production ML system. This means you should follow best practices in how
to shorten your development loop while having high confidence that your changes
will not break your ML system or clients of your ML system. For this, we will follow
best practices from MLOps.
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Notebooks as ML Pipelines?
Many software engineering problems arise with Jupyter/Colaboratory notebooks
when you write ML pipelines as notebooks, including:

• There is a huge temptation to build a monolithic ML pipeline that does feature
engineering, model training, and inference in one single notebook;

• Features are computed in cells making it impossible to write unit tests for the fea‐
ture logic;

• Many orchestration engines do not support scheduling notebooks as jobs.

These problems can be overcome by following good software engineering practices,
such as refactoring feature computation code into modules that are invoked by the
notebook—the feature logic can then be unit tested with PyTest. Even if your note‐
book cannot be scheduled by an orchestrator, a common solution is convert the note‐
book to a Python program, for example, using nbconvert, and then run the cells in
order from top to bottom.

Principles of MLOps
MLOps is a set of development and operational processes that enables ML Systems to
be developed faster that results in more reliable software. MLOps should help you
tighten the development loop between the time you make changes to software or
data, test your changes, and then deploy those changes to production. Many develop‐
ers with a data science background are intimidated by the systems focus of MLOps on
automation, testing, and operations. In contrast, DevOps’ northstar is to get to a min‐
imal viable product as fast as possible - you shouldn’t need to build the 26 or 28
MLOps components identified by Google and Databricks, respectively, to get started.
This section is technology agnostic and discusses the MLOps principles to follow
when building a ML system. You will ultimately need infrastructure support for the
automated testing, versioning, and monitoring of ML artifacts, including features,
models, and predictions, but here, we will first introduce the principles that transcend
specific technologies.

The starting point for building reliable ML systems, by following MLOps principles,
is testing. An important observation about ML systems is that they require more lev‐
els of testing than traditional software systems. Small bugs in data or code can easily
cause a ML model to make incorrect predictions. ML systems require significant
engineering effort to test and validate to make sure they produce high quality predic‐
tions and are free from bias. The testing pyramid shown in figure 6 shows that testing
is needed throughout the ML system lifecycle from feature development to model
training to model deployment.
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Figure 1-6. The testing pyramid for ML Systems is higher than traditional software sys‐
tems, as both code and data need to be tested, not just code.

It is often said that the main difference between testing traditional software systems
and ML systems is that in ML systems we need to test both the source-code and data -
not just the source-code. The features created by feature pipelines can have their logic
tested with unit tests and their input data checked with data validation tests, see
Chapter 5. The models need to be tested for performance, but also for a lack of bias
against known groups of vulnerable users, see Chapter 6. Finally, at the top of the pyr‐
amid, ML-Systems need to test their performance with A/B tests before they can
switch to use a new model, see Chapter 7.

Given this background on testing and validating ML systems and the need for auto‐
mated testing and deployment, and ignoring specific technologies, we can tease out
the main principles for MLOps. We can express it as MLOps folks believe in:

• Automated testing of changes to your source code;
• Automated deployment of ML artifacts (features, training data, models);
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• Validation of data ingested into your ML system;
• Versioning of ML artifacts;
• A/B testing ML artifacts;
• Monitoring the predictions, prediction quality, and SLAs (service-level agree‐

ments) for ML systems.

MLOps folks believe in testing their ML systems and that running those tests should
have minimal friction on your development speed. That means automating the exe‐
cution of your tests, with the tests helping ensure that changes to your code:

1. Do not introduce errors (it is important to catch errors early in a dynamically
typed language like Python),

2. Do not break any client contracts (for example, changes to feature logic can break
consumers of the feature data as can breaking schema changes for feature data or
even SLA violations due to changes that result in slower code),

3. Integrates as expected with data sources and sinks (feature store, model registry,
inference store), and

4. Do not introduce model bias or degrade model performance.

There are many DevOps platforms that can be used to implement continuous integra‐
tion (CI) and continuous training (CT). Popular platforms for CI are Github Actions,
Jenkins, and Azure DevOps. An important point is that support for CI and CT are
not a prerequisite to start building ML systems. If you have a data science back‐
ground, comprehensive testing is something you may not have experience with, and
it is ok to take time to incrementally add testing to both your arsenal and to the ML
systems you build. You can start with unit tests for functions (such as how to com‐
pute features), model performance and bias testing your training pipeline, and add
integration tests for ML pipelines. You can automate your tests by adding CI support
to run your tests whenever you push code to your source code repository. Support for
testing and automated testing can come after you have built your first minimal viable
ML System to validate that what you built is worth maintaining.

MLOps folks love that feeling when you push changes in your source code, and your
ML artifact or system is automatically deployed. Deployments are often associated
with the concept of development (dev), pre-production (preprod), and production
(prod) environments. ML assets are developed in the dev environment, tested in pre‐
prod, and tested again before for deployment in the prod environment. Although a
human may ultimately have to sign off on deploying a ML artifact to production, the
steps should be automated in a process known as continuous deployment (CD). In
this book, we work with the philosophy that you can build, test, and run your whole
ML system in dev, preprod, or prod environments. The data your ML system can
access will be dependent on which environment you deploy in (only prod has access

What is a ML Pipeline ? | 41



to production data). We will start by first learning to build and operate a ML system,
then look at CD in Chapter 12.

MLOps folks generally live by the database community maxim of “garbage-in,
garbage-out”. Many ML systems use data that has few or no guarantees on its quality,
and blindly ingesting garbage data will lead to trained models that predict garbage.
The MLOps philosophy deems that rather requiring users or clients to clean the data
after it has arrived, you should validate all input data before it is made accessible to
users or clients of your system. In Chapter 5, we will dive into how to design and
write data validation tests and run them in feature and inference pipelines (these are
the pipelines that feed external data to your ML system). We will look at what mitigat‐
ing actions we can take if we identify data as incorrect, missing, or corrupt.

MLOps is also concerned with operating ML systems - running, maintaining, and
updating systems. In particular, updating ML systems has historically been a very
complex, manual procedure where new models are rolled out in stages, checking for
errors and model performance at each stage. MLOps folks dream of a ML system
with a big green button and a big red button. The big green button upgrades your
system, and the big red button rolls back the most recent upgrade, see figure 7. Ver‐
sioning of ML artifacts is a necessary prerequisite for the big green and red buttons.
Versioning enables ML systems to be upgraded without downtime, to support roll‐
back after failed upgrades, and to support A/B testing.

Figure 1-7. Versioning of features and models is needed to be able to easily upgrade ML
systems and rollback upgrades in case of failure.
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Versioning enables you to simultaneously support multiple versions of the same fea‐
ture or model, enabling you to develop a new version, while supporting an older ver‐
sion in production. Versioning also enables you to be confident if problems arise after
deploying your changes to production, that you can quickly rollback your changes to
a working earlier version (of the model and features that feed it).

MLOps folks love to experiment, especially in production. A/B testing is important
for ensuring continual delivery of service for a ML system that supports upgrades.
A/B testing requires versioning of ML artifacts, so that you can run two versions in
parallel. Models are connected to features, so we need to version both features and
models as well as training data.

Finally, MLOps folks love to know how their ML systems are performing and to be
able to quickly troubleshoot by inspecting logs. Operations teams refer to this as
observability for your ML system. A production ML system should collect metrics to
build dashboards and alerts for:

1. Monitoring the quality of your models’ predictions with respect to some business
key performance indicator (KPI),

2. Monitoring the quality/distribution of new data arriving in the ML system,
3. Measuring the performance of your ML system’s components (model serving,

feature store, ML pipelines)

Your ML system should provide service-level agreements (SLAs) for its performance,
such as responding to a prediction request within 100ms or to retrieve 100 precom‐
puted features from the feature store in less than 10ms. Observability is also about
logging, not just metrics. Can Data Scientists quickly inspect model prediction logs to
debug errors and understand model behavior in production - and, in particular, any
anomalous predictions made by models? Prediction logs can also be collected for the
goal of creating new training data for models.

In chapters 12 and 13, we go into detail of the different methods and frameworks that
can help implement MLOps processes for ML systems with a feature store.

Machine Learning Systems with a Feature Store
A machine learning system is a platform that includes both the ML pipelines and the
data infrastructure needed to manage the ML assets (reusable features, training data,
and models) produced and consumed by feature engineering, model training, and
inference pipelines, see figure 8. When a feature store is used with a ML system, it
stores both the historical data used to train models as well as the latest feature data
used to make predictions (model inference). It provides two different APIs for read‐
ing feature data - a batch API to efficiently read large volumes of feature data and an
realtime API to read the latest feature data at low latency.
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Figure 1-8. A ML system with a feature store supports 3 different types of ML pipeline: a
feature pipeline, a training pipeline, and inference pipeline. Logging pipelines help imple‐
ment observability for ML systems.

While the feature store stores feature data for ML pipelines, the model registry is the
storage layer for trained models. The ML pipelines in a ML system can be run on
potentially any compute platform. Many different compute engines are used for fea‐
ture pipelines - including SQL, Spark, Flink, and Python - and whether they are batch
or streaming pipelines, they typically are operational services that need to either run
on a schedule (batch) or 24x7 (streaming). Training pipelines are most commonly
implemented in Python, as are online inference pipelines. Batch inference pipelines
can be Python, PySpark, or even a streaming compute engine or SQL database.

Given that this is the canonical architecture for ML systems with a feature store, we
can identify four main types of ML systems with this architecture.

Three Types of ML System with a Feature Store
A ML system is defined by how it computes its predictions, not by the type of appli‐
cation that consumes the predictions. Given that, Machine learning (ML) systems
that use a feature store can be categorized into three different types:

1. Real-time interactive ML systems make predictions in response to user requests
using fresh feature data (at most a few seconds old). They ensure fresh features
either by computing features on-demand from request input data or by updating
precomputed features in an online feature store using stream processing;

2. Batch ML systems run on a schedule, running batch inference pipelines that take
new feature data and a model to make predictions that are typically stored in
some downstream database (called an inference store), to be later consumed by
some ML-enabled application;
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3. Stream processing ML systems use an embedded model to make predictions on
streaming data. They may also enrich their stream data with historical or contex‐
tual precomputed features retrieved from a feature store;

Real-time, interactive applications differ from the other systems as they can use mod‐
els as network hosted request/response services on model serving infrastructure. The
other systems use an embedded model, downloaded from the model registry, that
they invoke via a function call or an inter-process call. Real-time, interactive applica‐
tions can also use an embedded model, if model-serving infrastructure is not avail‐
able or if very low latency predictions are needed.

Embedded/Edge ML Systems
The other type of ML system, not covered in this book, is embedded/edge applications.
They typically use an embedded model and compute features from their rich input
data (often sensor data, such as images), typically without a feature store. For exam‐
ple, Tesla Autopilot is a driver assist system that uses sensors from cameras and other
systems to help the ML models to make predictions about what driving actions to
take (steering direction, acceleration, braking, etc). Edge ML Systems are real-time
ML systems that run on resource-constrained network detached devices. For exam‐
ple, Tetra Pak has an image classification system that runs on the factory floor, identi‐
fying anomalies in cartons.

The following are some examples for the three different types of ML systems that use
a feature store:

Real-Time ML Systems
ChatGPT is an example of an interactive system that takes user input (a prompt)
and uses a LLM to generate a response, sent as an answer in text.

A credit-card fraud prevention system that takes a credit card transaction, and
then retrieves precomputed features about recent use of the credit card from a
feature store, then predicts whether the transaction is suspected of fraud or not,
letting the transaction proceed if it is not suspected of fraud.

Batch ML Systems
An air quality prediction dashboard shows air quality forecasts for a location. It is
built from predictions made by a batch ML system that uses observations of air
quality from sensors and weather data as features. A trained model can predict
air quality by using a weather forecast (input features) to predict air quality. This
will be the first example ML system that we build in Chapter 3.

Google Photos Search is an interactive system that uses predictions made by a
batch ML system. When your photos are uploaded to Google Photos, a classifica‐
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tion model is used to tag parts of the photo. Those tags (things/people/places) are
indexed against the photo, so that you can later search in free-text on Google
Photos to find photos that match your search query. For example, if you type in
“bike”, it will show you your photos that have one or more bicycles in them.

Stream Processing ML Systems
Network intrusion detection is a real-time pattern matching problem that does
not require user input. You can use stream processing to extract features about all
traffic in a network, and then in your stream processing code, you can use a
model to predict anomalies such as network intrusion.

ML Frameworks and ML Infrastructure used in this book
In this book, we will build ML systems using programs written in Python. Given that
we aim to build ML systems, not the ML infrastructure underpinning it, we have to
make decisions about what platforms to cover in this book. Given space restrictions
in this book, we have to restrict ourselves to a set of well-motivated choices.

For programming, we chose Python as it is accessible to developers, the dominant
language of Data Science, and increasingly important in data engineering. We will use
open-source frameworks in Python, including Pandas and Polars for feature engi‐
neering, Scikit-Learn and PyTorch for machine learning, and KServe for model serv‐
ing. Python can be used for everything from creating features from raw data, to
model training, to developing user interfaces for our ML systems. We will also use
pre-trained LLMs - open-source foundation models. When appropriate, we will also
provide examples using other programming frameworks or languages widely used in
the Enterprise, such as Spark and DBT/SQL for scalable data processing, and stream
processing frameworks for real-time ML systems. That said, the example ML Systems
presented in this book were developed such that only knowledge of Python is a pre‐
requisite.

To run our Python programs as pipelines in the cloud, we will use serverless plat‐
forms, such as Modal and Github Actions. Both Github and Modal offer a free tier
(Model requires credit card registration, though) that will enable you to run the ML
pipelines introduced in this book. Again, the ML pipeline examples could easily be
ported to run on containerized runtimes such as Kubernetes or serverless runtimes,
such as AWS Lambda. Another free alternative is Github Actions. Currently, I think
that Modal has the best developer experience of available platforms, hence its inclu‐
sion here.

For exploratory data analysis, model training, and other non-operational services, we
will use open-source Jupyter notebooks. Finally, for (serverless) user interfaces hosted
in the cloud, we will use Streamlit which also provides a free cloud tier. An alternative
would be Hugging Face Spaces and Gradio.
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For ML infrastructure, we will use Hopsworks as serverless ML infrastructure, using
its feature store, model registry, and model serving platform to manage features and
models. Hopsworks is open-source, was the first open-source and enterprise feature
store, and has a free tier for its serverless platform. The other reason for using Hops‐
works is that I am one of the developers of Hopsworks, so I can provide deeper
insights into its inner workings as a representative ML infrastructure platform. With
Hopsworks free serverless tier, that you can use to deploy and operate your ML sys‐
tems without cost or the need to install or operate ML infrastructure platforms. That
said, given all of the examples are in common open-source Python frameworks, you
can easily modify the provided examples to replace Hopsworks with any combination
of an existing feature store, such as FEAST, model registry and model serving plat‐
form, such as MLFlow.

Summary
In this chapter, we introduced ML systems with a feature store. We introduced the
main properties of ML systems, their architecture, and the ML pipelines that power
them. We introduced MLOps and its historical evolution as a set of best practices for
developing and evolving ML systems, and we presented a new architecture for ML
systems as feature, training, and inference (FTI) pipelines connected with a feature
store. In the next chapter, we will look closer at this new FTI architecture for building
ML systems, and how you can build ML systems faster and more reliably as connec‐
ted FTI pipelines.
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CHAPTER 2

Machine Learning Pipelines

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

In 1968, Edsger Dijkstra published an influential letter in the Communications of the
ACM entitled “Go To Statement Considered Harmful” to highlight the excessive use
of the GOTO statement in programming languages.1 In 2024, the term “machine
learning pipeline” is often used as a catch-all term to describe how to productionize
ML models. However, there is currently widespread confusion about what a ML pipe‐
line is and what it is not. What are the inputs and outputs to a ML pipeline? If some‐
body says they built their ML system using a ML pipeline what information can you
glean from that? As such, the term ML pipelines, as it is currently used, could be
“considered harmful” when communicating about building ML systems. Instead, we
will strive to describe ML systems in terms of the actual pipelines used to build it. We
provide a rigorous definition of different ML pipelines and describe how to modula‐
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rize your ML system using ML pipelines that communicate via the feature store,
model registry, and model-serving infrastructure.

Let’s begin with pipelines. A pipeline is a computer program that has clearly defined
inputs and outputs (that is, it has a well-defined interface) and it either runs on a
schedule or continuously. A machine learning pipeline is any pipeline that outputs
ML artifacts used in a ML system. You can modularize a ML system by connecting
independent ML pipelines together - a feature pipeline to create feature data, a train‐
ing data pipeline to create training data from feature data and labels, a model training
pipeline to read training data and create a model, and a batch inference pipeline that
reads feature (inference) data and a model and outputs predictions to some sink for
use by an AI-enabled application.

When we talk about ML pipelines, we talk abstractly about the pipelines that create
ML artifacts. We typically name a concrete ML pipeline after the ML artifact(s) they
create - a feature pipeline, a (model) training pipeline or an inference (predictions)
pipeline. Occasionally, you may name a ML pipeline based on how they modify a ML
artifact - such as a model or feature validation pipeline that asynchronously validates
a model or feature data, respectively. In this chapter, we cover many of the different
possible ML pipelines, but we will double click on the most important ML pipelines
for building a ML system - feature pipelines, training pipelines, and inference pipe‐
lines. Three pipelines and the truth.

Building ML Systems with ML Pipelines
Before we develop our first ML pipelines, we will look at how we build ML systems.
ML systems are software systems, and software engineering methodologies help
guide you when building software systems. For example, DevOps is a software engi‐
neering methodology that integrates software development and operations to build,
test, and release software faster using automation, versioning, source code control,
and separate development and production environments.

The first generation of software development processes for machine learning, such as
Microsoft’s Team Data Science Process, concentrated primarily on data collection and
modeling, but did not address how to build ML systems. As such, they were quickly
superseded by MLOps, which focuses on automation, versioning, and collaboration
between developers and operations to build ML systems. As discussed in Chapter 1,
modular ML systems are also key for MLOps.

Minimal Viable Prediction Service (MVPS)
We introduce here a minimal MLOps development methodology based on getting as
quickly as possible to a minimal viable ML system, or MVPS (minimal viable predic‐
tion service). I followed this MVPS process in my course on building ML systems at
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KTH, and it has enabled students to get to a working ML system (that uses a novel
data source to solve a novel prediction problem) within a few days, at most.

ML artifacts include models, features, training data, experiment
tracking data, model deployments, predictions, prediction logs. ML
artifacts are stateful objects that are produced by ML pipelines and
are managed by your ML infrastructure services. All ML artifacts
are immutable, except for feature data, which is mutable as it is
updated over time, and model deployments that can be A/B tested
and upgraded. ML artifacts can be used by other internal ML pipe‐
lines or by external clients of the ML system. For example, features
in a feature store are used in training pipelines and online infer‐
ence pipelines by interactive applications.

MVPS Process
The MVPS development process, illustrated in Figure 2-1, starts with

• Identifying the prediction problem you want to solve
• The KPIs (key performance indicators) you want to improve
• The data sources you have available for use.

Once you have identified these three pillars that make up your ML system, you will
need to map your prediction problem to a ML proxy metric - a target you will opti‐
mize in your ML system. This is often the most challenging step.
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Figure 2-1. The MVPS process for developing machine learning systems starts in the left‐
most circle by identifying a prediction problem, how to measure its success using KPIs,
and how to map it onto a ML proxy metric. Based on the identified prediction problem
and data sources, you implement the feature/training/inference pipeline, as well as either
a user interface or integration with an external system that consumes the prediction. The
arcs connecting the circles represent the iterative nature of the development process,
where you often revise your pipelines based on user feedback and changes to require‐
ments.

For example, you might want to predict items or content that a user is interested in.
For recommending items in an e-commerce store, the KPI could be increased con‐
version as measured by users placing items in their shopping cart. For content, a
measurable business KPI could be to maximize user engagement, as measured by the
time a user spends on the service. Your goal as a data scientist or ML engineer is to
take the prediction problem and business KPIs and translate them into a ML system
that optimizes some ML metric (or target). The ML metric might be a direct match to
business KPI - the probability that a user places an item in a shopping cart, or the ML
metric might be proxy metric for the business KPI - the expected time a user will
engage with a recommended piece of content (a proxy for increasing user engage‐
ment on the platform).

Once you have your prediction problem, KPIs, and ML target, you need to think
about how to create training data with features that have predictive power for your
target, based on your available data. You should start by enumerating and obtaining
access to the data sources that feed your ML system. You then need to understand the
data, so that you can effectively create features from that data. Exploratory data analy‐
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sis (EDA) is a first step you often take to gain an understanding of your data, its qual‐
ity, and if there is a dependency between any features and the target variable. EDA
typically helps develop domain knowledge of the data, if you are not yet familiar with
the domain. It can help you identify which variables could or should be used or cre‐
ated for a model and their predictive power for the model. You can start EDA by
examining your data and its distributions in a feature store (or Kaggle), and move on
performing EDA in notebooks if needed, visually analyzing the data.

Once you have a reasonable understanding of your data and the features you need,
you have to extract both the target observations (or labels) and features from your
data sources. This involves building feature pipelines from your data sources. The
output of your feature pipelines will be the features (and observations/labels) that are
stored in a feature store. If you are fortunate enough that your feature store already
contains the target(s) and/or features you need for your prediction problem, you can
skip implementing the feature pipelines.

From the feature store, you can create your training data, and then implement a
training pipeline to train your model that you save to a model registry. Finally, you
implement an inference pipeline that uses your model and new feature data to make
predictions, and add a UI or dashboard to create your minimal viable prediction ser‐
vice. This MVPS development process is iterative, as you incrementally improve the
feature, training, and inference pipelines. You add testing, validation, and automa‐
tion. You can later add different environments for development, staging, and produc‐
tion.

The next (unavoidable) step is to identify the different technologies you will use to
build the feature, training, and inference pipelines, see Figure 2-2. We recommend
using a Kanban board for this. A Kanban board is a visual tool that will track work as
it moves through the MVPS process, featuring columns for different stages and cards
for individual tasks. Atlassian JIRA and Github projects are examples of Kanban
boards, widely used by developers.
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Figure 2-2. The Kanban board for our MVPS identifies the potential data sources, tech‐
nologies used for ML pipelines, and types of consumers of predictions produced by ML
systems. Here, we show some of the possible data sources, frameworks and orchestrators
used in ML pipelines, and AI apps that consume predictions.

It is a good activity to fill in the MVPS Kanban board before starting your project to
get an overview of the ML system you are building. You should entitle the Kanban
board with the name of the prediction problem your ML system solves, then fill in
the data sources, the AI applications that will consume the predictions, and the tech‐
nologies you will use to implement the feature/training/inference pipelines. You can
also annotate the different Kanban lanes with non-functional requirements, such as
the volume, velocity, and freshness requirements for the feature pipelines, or the SLO
(service-level objective) for the response times for an online inference pipeline. After
we have captured the requirements for our ML system, we move on to writing code.

Wanted: Modular Code for Machine Learning Pipelines
A successful ML system will need to be updated and maintained over time. That
means you will need to make any changes to your source code, such as:

1. The set of features computed or the data they are computed from;
2. How you train the model (its model architecture or hyperparameters) to improve

its performance or reduce any bias;
3. For batch ML systems, make predictions more (or less) frequently or change the

sink where you save your predictions;
4. For online ML systems, changes in the request latency or feature freshness

requirements.
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Now, imagine you had developed your system as a monolithic batch ML pipeline or a
couple of separated programs with non DRY (do not repeat yourself) source code.
How are you going to make sure the changes you make work correctly before you
deploy the changed code? How are you going to on-board a new developer to work
on the codebase?

The solution is to have a modular architecture and codebase. Modularity enables a
software system to have its components separated and recombined. For example,
source code can be factored into functions that each encapsulate a piece of work, and
those functions can then be reused in different parts of a codebase. You hide the piece
of code in the function (with all of its complexity) behind an interface. In Python, the
interface to a function is the function’s signature - its name, parameters, and return
type(s). This interface provides a contract to clients that use the function - you will
not change the function such that you break the expectations of clients. Modularity
and encapsulation enable you to reduce complexity in a software system by decom‐
posing a system into more manageable parts and hiding the complexity of each part
behind an interface.

At the system architecture level, we can modularize the ML system into our 3 (or
more) pipelines - feature pipeline, training pipeline, and inference pipelines. The
pipeline is our abstraction and the interface is the input and output of each pipeline.
But that is not enough modularization to build a maintainable, understandable soft‐
ware system.

Imagine we write a feature pipeline, computing data transformations in Pandas, in
Example 2-1.

Example 2-1. Example of non-modular feature engineering code in Pandas. The method
compute_features creates five different features that are not independently testable or
documented.

import pandas as pd
def compute_features(df: pd.Dataframe): -> pd.Dataframe
if config["region"] == "UK":
df["holidays"] = is_uk_holiday (df["year"], df[" week"])
else:
df["holidays"] = is_holiday (df["year"], df ["week"])
df["avg_3wk_spend"] = df["spend"].rolling (3).mean()
df["acquisition_cost"] = df["spend"]/df["signups"]
df["spend_shift_3weeks"] = df["spend"].shift(3)
df["special_feature1"] = compute_bespoke_feature(df)
return df

df = pd.read_parquet("my_table.parquet")
df = compute_features(df)
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This code snippet is not modular, as one function computes five features. It is difficult
to test the individual features computed in the above code. It is challenging to inde‐
pendently update the individual features computed in the above code. It is difficult to
understand the features the function compute_features computes. It is difficult to
debug individual feature computations.

The team at DAGster behind the open-source Hamilton framework proposed a solu‐
tion to refactor your Python source code as feature functions that update a DataFrame
containing the features. For each feature computed, you define a new feature func‐
tion. The features are created in a DataFrame (Pandas, PySpark, or Polars) by apply‐
ing the feature functions in the correct order, and that featurized DataFrame is then
used for training and inference.

We will follow the feature functions approach to build featurized DataFrames, but
our feature pipelines will store the DataFrame in a feature group in the feature store,
so that they can later be used for training and inference. Our approach to write mod‐
ular feature engineering is to build a DataFrame containing feature data using feature
functions (featurized DataFrame), see Figure 2-3. Each featurized DataFrame is writ‐
ten to a feature group in the feature store as a “commit” (append/update/delete). The
feature group stores the mutable set of features created over time. Training and Infer‐
ence steps can later use a feature query service to read a consistent snapshot of feature
data from one or more feature groups to train a model or to make predictions,
respectively.

Figure 2-3. A Python-centric approach to writing feature pipelines is to to build a Data‐
Frame and write it to a feature group in the feature store. The data can later be read
from feature groups by training and inference pipelines using a feature query engine or
service.
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The approach to modularize your feature logic is as follows. For every feature compu‐
ted as a column in the Pandas DataFrame, we have some feature logic. For example,
here, we compute the column aquisition_cost as the spend divided by the number
of users who sign up to our service (signups):

df['aquisition_cost'] = df['spend'] / df['signups']

We refactor the logic used to compute the aquisition_cost into a feature function as
follows:

def aquisition_cost(spend: pd.Series, signups: pd.Series) -> pd.Series:
    """Acquisition cost per user is total spend divided by number of signups."""
    return spend / signups

At first glance, this increases the number of lines of code we have to write. However,
now we have a documented function that can potentially be reused by different pro‐
grams. We can now write a unit test for our aquisition_cost feature, as follows:

@pytest.fixture
def get_spends(self) -> pd.DataFrame:
    return pd.DataFrame([[20, 40], [5, 4], [4, 10],
        columns=["spends", "signups", "aquisition_cost"])
def test_spend_per_signup (get_spends : Callable):
    df=get_spends()
    df["res"] = aquisition_cost(df["spends"), df["signups"])
    pd.testing.assert_series_equal(df["res"], df["aquisition_cost"])

This unit test enforces a contract for how the acquisition_cost feature is computed
- if you or another developer changes how to compute the acquisition_cost, the
unit test below would fail, indicating its contract is broken for downstream clients
that use the feature. You can, of course, update the feature logic for acquisi
tion_cost, but that should typically be performed by creating a new version of the
feature, and the new version would require a new unit test. We will cover versioning
features in Chapter 4 on feature stores.

We will apply this method for modularizing feature logic code into feature functions
for all data transformations performed using Python in this book. In the next section,
we will see that building modular ML systems also requires you to know the type of
feature you are creating with a data transformation - a reusable feature, a model-
specific feature, or an on-demand feature.
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Normally, I would advocate using Google Colaboratory to run
notebooks, but in its current state in early 2024, you cannot easily
import Python modules from files external to your notebook. For
example, you can’t store your .ipynb notebook in the same direc‐
tory as a my_functions.py file in a Github repository, and then
checkout your Colaboratory notebook and call ‘import my_func‐
tions’ in your notebook. However, this works fine with Jupyter
notebooks, so we will use Jupyter instead - it is best practice to
store feature functions in Python modules, so they can be inde‐
pendently unit-tested and reused in different ML pipelines.

A Taxonomy for Data Transformations in ML Pipelines
Data transformations are key to ML systems. ML systems read in data and progres‐
sively perform transformations on the data (cleaning, mapping, reformatting, com‐
pressing) until the data is fitted to a model. ML systems also perform inference,
reading in new data to make predictions with, and apply the same transformations
that were used in training to create the features, and then making predictions on the
new data with the trained model.

In monolithic ML pipelines, exactly the same data transformations are executed in
the feature engineering, training, and inference phases, as they are performed in the
same program with the same code. In other words, in a monolithic ML pipeline, all
data transformations are essentially equivalent. However, when you break up your
monolithic ML pipeline by adding a feature store to the mix, you quickly see that not
all data transformations are equivalent - you can’t just refactor your monolith to put
all data transformations in feature pipelines. Let’s examine why.

Firstly, the feature store should store features that can be reused across many models.
That means feature pipelines should create reusable features. This leads many Data
Scientists to the reasonable question - “should I store encoded feature data in the fea‐
ture store?”. The answer, as we will examine in detail in the next section, is that we
should not, in general, store encoded feature data in the feature store. Feature encod‐
ing is a data transformation that is parameterized by a model’s training dataset and
the output feature data is, therefore, not reusable across many models - it is specific to
that model (and its training data).

Another data transformation that needs to be performed outside of a feature pipeline
is a real-time data transformation on input only available at request-time. These on-
demand transformations are performed in online inference pipelines (for example,
with a Python user-defined function or a SQL query). But, what if we want to reuse
the same feature logic from the online inference pipeline to compute (or backfill) fea‐
ture data in our feature pipeline using historical data?
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To address both of these challenges, we now introduce a taxonomy for data transfor‐
mations in ML pipelines that use a feature store. The taxonomy organizes data trans‐
formations into 3 different groups (model-dependent, model-independent, and on-
demand transformations), informing you in which ML pipeline(s) to implement the
data transformation. But, before looking at the taxonomy, we will first introduce data
transformations from data science that are parameterized by training data - the
encoding, scaling, and normalizing of feature data.

Feature Types and Model-Dependent Transformations
A data type for a variable in a programming language defines the set of valid opera‐
tions on that variable - invalid operations will cause an error, either at compile time
or runtime. Feature types are a useful extension to data types for understanding the
set of valid operations on a variable in machine learning. For example, we can encode
a categorical variable (convert it from a string to a numerical representation), but we
cannot encode a numerical feature. Similarly, we can tokenize a string (categorical)
input to a LLM, but not a numerical feature. We can normalize a numerical variable,
but not a categorical variable. In Figure 2-4, you can see that in addition to the con‐
ventional categorical variables (strings, enums, booleans) and numerical variables
(int, float, double), I included arrays (lists, vector embeddings) as feature types. A
vector embedding is a fixed-size array of either floating point numbers or integers,
and they are used to store a compressed representation of some higher dimensional
data. Lists and vector embeddings are now widely stored as features in feature stores -
and they have well defined sets of valid operations. For example, taking the 3 most
recent entries in a list is a valid operation on a list, as is indexing/querying a vector
embedding.
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Figure 2-4. Data types in machine learning can be categorized into one of three different
feature types - categorical, numerical or an array. Within those categories, there are fur‐
ther subclasses. Ordinal variables have a natural order (e.g., low/med/high), while nomi‐
nal variables do not. Ratio variables have a defined zero-point, while interval variables
do not. Arrays can be a list of values or an embedding vector.

Feature types lack programming language support, instead they are supported in ML
frameworks and libraries. For example, in Python, you may use a ML framework
such as Scikit-Learn, TensorFlow, XGBoost, or PyTorch, and each framework has its
own implementation of the encoding/scaling/normalization transformations for their
own feature types.

As discussed earlier, the main challenge in structuring ML systems with feature
encoding is that they produce features that can be reused across multiple models. For
example, if I want to fine-tune a LLM on a dataset, and I have two candidate LLM
models (such as Llama 2 and Mistral), each LLM will have its own tokenizer. If I
tokenize the text in my dataset for Mistral, I can’t use the tokenized text to fine-tune a
model in Llama2, and vice versa. Similarly, although different models might want to
reuse the same numerical feature, they might want to encode or scale the same feature
differently. For example, gradient-descent models (deep learning) often work better
when numerical features have been normalized, but decision trees do not benefit
from normalization.

Another problem with these transformations on feature types is that if you were to
store encoded, centered, or scaled feature data in the feature store, it would not be
amenable to EDA. For example, if you normalized the annual income for citizens
from census data, you make the data impossible to understand - it is easier for a data
scientist to understand and visualize an income of $74,580 compared to its normal‐
ized value of 0.5. Even worse, every time you write new encoded feature data to a fea‐
ture store, you would have to recompute all of the data for that feature - as the mean/
standard deviation/set-of-categories may have changed with the new data. This could
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make even very small writes to the feature store very expensive (in what is called
write amplification - not a good thing).

The reason why encoding/scaling/normalization creates features that are not reusable
across other models is that they are parameterized by a training dataset. For example,
when we use min-max scaling to normalize a numerical feature, we need the min and
max values for that numerical feature in the training dataset. When we one-hot
encode a categorical feature (convert it into an array of bytes, with each category rep‐
resented by a bit in the array, with a binary one for the variable’s category and binary
zeros for all the other categories) it is parameterized, by the set of all categories in the
training dataset. For this reason, we call these types of transformations model-
dependent transformations, the transformations are dependent on the model and its
training data. And we should not perform these transformations in feature pipelines,
before the feature store. So, we need to apply model-dependent transformations in
both the training and inference pipelines, and we need to make sure there is no skew
between the model-dependent transformations if the training and inference pipelines
are separate programs.

Reusable Features with Model-Independent Transformations
Data engineers are typically not very familiar with the model-dependent transforma‐
tions introduced in the last section. Those transformations are specific to machine
learning and the goals of model-dependent transformations is to make feature data
compatible with a particular machine learning library or to improve model perfor‐
mance (such as normalization of numerical features for gradient-descent based ML).

The types of transformations that data engineers are very familiar with that are
widely used in feature engineering are (windowed) aggregations (such as the
max/min of some numerical variable), windowed counts (for example, number of
clicks per day), and any transformations to create RFM (recency, frequency, mone‐
tary) features. Transformations that create features that can be reused across many
models are called model-independent transformations. Model-independent transfor‐
mations are applied once in batch or streaming feature pipelines, and the reusable
feature data produced by them is stored in the feature store, to be later used by down‐
stream training and inference pipelines.

Real-Time Features with On-Demand Transformations
What if I have a real-time ML system and the data required to compute my feature is
only available as part of a user request? In that case, we will have to compute the fea‐
ture in the online inference pipeline in what is called an on-demand transformation
that produces an on-demand (or real-time) feature. Ideally, we would like to also use
the same on-demand transformation in a feature pipeline to compute the same fea‐
ture from historical data logged from your real-time ML system. We will see later in
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Chapter 9 how we implement on-demand feature functions as user-defined functions
(UDFs) as either Python functions or Pandas UDFs.

The ML Transformation Taxonomy and ML Pipelines
Now that we have introduced the three different types of features produced by ML
pipelines, we can present a taxonomy for the data transformations that create reusa‐
ble, model-specific, and real-time features in machine learning, see Figure 2-5. Our
taxonomy includes:

• Model-independent transformations that produce reusable features that are
stored in a feature store;

• Model-dependent transformations that produce features specific to a single
model;

• On-demand transformations that require request-time data to be computed, but
can also be computed on historical data to backfill features to a feature store.

Figure 2-5. The taxonomy of Data Transformations for Machine Learning that create
reusable features, model-specific features, and real-time features.

In Figure 2-6, we can see how the different data transformations in our taxonomy
map onto our three ML pipelines.
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Figure 2-6. Data Transformations for Machine Learning and the ML Pipelines they are
performed in.

Notice that model-independent transformations are only performed in feature pipe‐
lines. However, model-dependent transformations are performed in both the training
and inference pipelines. On-demand transformations are also performed in two dif‐
ferent pipelines - the (online) inference pipeline and the feature pipeline. As these
different pipelines are separate programs, you need to ensure that exactly the same
data transformation is applied in both ML pipelines - that is, there should be no skew
between the two different implementations. Any skew between transformations in
two different ML pipelines is very difficult to diagnose and can negatively affect your
model performance.

Now that we have introduced our classification of data transformations, we can dive
into more details on our three ML pipelines, starting with the feature pipeline.

Feature Pipelines
A feature pipeline is a program that orchestrates the execution of a dataflow graph of
model-independent and on-demand data transformations. These transformations
include extracting data from a source, data validation and cleaning, feature extrac‐
tion, aggregation, dimensionality reduction (such as creating vector embeddings),
binning, feature crossing, and other feature engineering steps on input data to create
and/or update feature data, see Figure 2-7.
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Figure 2-7. A feature pipeline performs data transformations on input data to create
reusable features that are stored in the feature store. It can be run against historical data
(backfilling) or new data that arrives in batches or as a stream of incoming data.

A feature pipeline is, however, more than just a program that executes data transfor‐
mations. It has to be able to connect and read data from the data sources, it needs to
save its feature data to a feature store, and it also has non-functional requirements,
such as:

Backfilling or operational data
The same feature pipeline (or at least the same transformations) should be able to
create feature data using historical data and newly arrived data.

Scalability
Ensure the feature pipeline is provisioned with enough resources to process the
expected data volume.

Feature freshness
What is the maximum permissible age of precomputed feature data used by cli‐
ents? Do feature freshness requirements mean you have to implement the feature
pipeline as a stream processing program or can it be a batch program?

Governance and security requirements
Where can the data be processed, who can process the data, will processing create
a tamper-proof audit log, will the features be organized and tagged for discovera‐
bility?

Data quality guarantees
Does your feature pipeline minimize the amount of corrupt data that is written to
the feature store?

Let’s start with the source data for your feature pipeline - where does it come from?
Imagine developing a new feature pipeline and getting data from a source you’ve
never parsed before (for example, an existing table in a data warehouse). The table
may have been gathering data for a while, so you could run your data transformations
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against the historical data in the table to backfill feature data into your feature store. It
may also happen that you change the data transformations in your feature pipeline,
so you, again, want to backfill feature data from the source table (with your new fea‐
ture transformations). Your data warehouse table will also probably have new data
available at some cadence (for example, hourly or daily). In this case, your feature
pipeline should be able to extract the new data from the table, compute the new fea‐
ture data, and append or update the feature data in the feature store.

What does the feature data look like that is created by your feature pipeline? The out‐
put feature data is typically in tabular format (one or more DataFrame(s) or table(s))
and it is typically stored in a feature group(s) in the feature store. Feature groups
store feature data as tables that are used by clients for both training and inference
(both online applications and batch programs).

Scalability and feature freshness requirements can be addressed by implementing a
feature pipeline in one of a number of different frameworks and languages. You have
to select the best technology based on your feature freshness requirements, your data
input sizes, and the skills available in your team. In Figure 2-8, we can see some of the
most popular frameworks used to feature pipelines. Batch programs are run on a
schedule (or in response to upstream events like data arrival), while stream process‐
ing programs are run 24x7.

Figure 2-8. Popular data processing options for implementing your feature pipelines,
showing which technologies can process which data sizes and whether the programs are
batch or streaming pipelines.
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Different data processing engines have different capabilities for (1) efficient process‐
ing, (2) scalable processing, and (3) ease of development and operation. For example,
if your batch feature pipeline processes less than 1 GB per execution, Pandas is often
the easiest framework to start with - the code example from earlier in this chapter,
Example 2-1, creates features in Pandas. But for TB-scale workloads, Spark and SQL
are popular choices. dbt is a popular framework for executing feature pipelines
defined in SQL. dbt adds some modularity to SQL by enabling transformations to be
defined in separate files (dbt calls them models) as a form of pipeline. The pipelines
can then be chained together to implement a feature pipeline, with the final output a
table in a feature store.

When your ML system needs fresh feature data, you may need to use stream process‐
ing to compute features. For stream processing feature pipelines, Bytewax or Quix
Streams are Python-native choices that are easy to get started with, but for large scale
Flink will give you the freshest features, as it processes events one-at-time as they
arrive, while Spark Streaming which is also scalable, and supports Python, has higher
latency than Flink due to it processing events in batches. We will cover more on batch
feature pipelines in Chapter 8, and streaming feature pipelines in Chapter 9.

Finally, feature pipelines tend not to have a very large number of parameters (com‐
pared to training pipelines). They can be parameterized with the connection details
for the source data, by a start_time and end_time for backfilling feature data or the
latest_missing_data for operational model, with parameters for the feature engi‐
neering steps (for example, a window size or the number of bins), with parameters
for optimizing feature data layout (partitioning or bucketing the feature data for
faster querying), and parameters for the pipeline program (number of CPUs, amount
of memory, number of workers, when and how to trigger the pipeline).

Training Pipelines
A training pipeline is a program that reads in training data (that is, feature data and
labels for supervised learning), applies model-dependent transformations to the
training data, trains a machine learning model using a ML framework, validates the
model for performance and absence of bias, see Figure 2-9. Training pipelines are
either run on-demand, when needed, or on a schedule (for example, new models are
re-deployed once per day or week).

Training pipelines can often have a large number of parameters, in particular for
deep-learning models. Examples of training parameters for fine-tuning a LLM
include the base LLM model, text encoding parameters, hyperparameters for the fine-
tuning method (such as LoRA or QLoRA) including quantization, batch size, gradi‐
ent accumulation, resource estimation and limits (for both GPU and CPU
availability), and supervised fine-tuning dataset parameters (url or path, the type of
dataset (instruction, conversation, completion).
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Figure 2-9. A training pipeline consists of a number of steps, from selecting the feature
data from the feature store (select, filter, join), to performing model-dependent transfor‐
mations, to training the model, and to validating the model before it is saved to a model
registry.

The output of the training pipeline is the trained, validated model, and it is typically
saved to a model registry. For online models, the model can also be deployed directly
to model serving infrastructure.

For larger models managed by larger teams, the training pipeline can be further
decomposed into a training data pipeline, where you select, filter, and join feature data
from a feature store to create training data that you then apply model-dependent
transformations on, see Figure 2-10. 

Figure 2-10. A training data pipeline that selects and joins features from the feature
store, outputting training data to a file system or object store for later use in a model
training pipeline.

The training data is then typically stored to a file system or an object store (such as
S3) or a high performance file system backed by NVMe (nonvolatile memory
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express) drives, such as HopsFS. For example, when fine-tuning a LLM, even with the
high performance PyTorch data loader, they are often I/O bound - the training pipe‐
line cannot read data fast enough from object store, so expensive GPUs are not fully
utilized. In this case, we often have a training data pipeline that stores training data to
high performance NVMe drives (currently ~8 GB/s throughput for modern NVMes
versus ~200 MB/s for AWS S3), which have high enough throughput to keep up with
the GPUs.

Figure 2-11. A model validation pipeline loads a model (typically from a model registry)
and validates that the model has both satisfactory performance and is free from bias,
before saving the validated model back to the model registry, annotating that the model
has passed all tests.

You can also perform model validation in its own model validation pipeline, where the
model is asynchronously evaluated after it has been saved to the model registry. This
is useful when model validation is a computationally intensive step, and the model
training pipeline uses GPUs, such as in LLMs.

Once our model is trained, validated, and stored, it will also need to be deployed if it
is an online model (batch models are typically downloaded from a model registry
when the batch inference pipeline is run). Model deployment can be performed as
part of the training run, but often a model needs approval from a human before
deployment. In this case, you would have a separate model deployment pipeline, as
shown in Figure 2-12, where a model is copied from a model registry, along with the
online inference pipeline program and any other deployment artifacts, to model serv‐
ing infrastructure.
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Figure 2-12. A model deployment pipeline deploys a model from a model registry to
model serving infrastructure.

The model deployment pipeline is typically run after the model has been approved,
but it can also be run on a schedule (for example, after daily or weekly retraining).
Model deployment often involves A/B tests, where the model is first deployed as a
shadow version and later promoted to the active version if it demonstrates good
enough performance and behavior.

Inference Pipelines
An inference pipeline is a program that reads in new feature data, applies model-
dependent transformations to the feature data, and makes predictions with the
trained model. Depending on whether the ML system is a real-time (interactive) ML
system or a batch ML system, your inference pipeline will be either a batch program
or a (Python) program invoked by a prediction request on the model serving infra‐
structure.

In Figure 2-13, we can see a batch inference pipeline, which reads inference data from
the feature store, downloads the model from the model registry, and makes predic‐
tions. Batch inference pipelines are typically implemented with DataFrames in either
Pandas, Polars, or Spark (although some data warehouses have recently added sup‐
port for batch inference with UDFs).
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Figure 2-13. A batch inference pipeline reads the inference data from the feature store
into a DataFrame (Pandas or PySpark, typically) and downloads the model from the
model registry.

Batch inference pipelines are run on a schedule and make predictions for all the rows
in the DataFrame (or SQL table) using the model, and the predictions are typically
stored in a table in a database (sometimes called an inference store) from where con‐
sumers use those predictions. An example of a batch inference ML system was a daily
surf height prediction service I wrote for a beach in Ireland (Lahinch), where I have
surfed a lot. It scrapes data from websites and publishes a dashboard on Github pages
every day.

Batch inference pipelines tend not to have a large number of parameters. Maybe they
will be parameterized by a start_time and end_time or the latest_missing_data
for inference data. Or maybe the inference data will be all the users or a subset of
users, in which case we identify the IDs of the users as a parameter. The details of the
sink for predictions may require user-supplied parameters.

Online inference pipelines are run in response to prediction requests. The prediction
requests typically contain ID(s) for the entities the prediction is being made for as
well as any runtime data required to compute features for the model. For example, in
an online retailer, the entity could be a customer and the ID could be their account
number, or an order reference number, or a session identity (if they are browsing the
website without an account). The online model is typically hosted on model serving
infrastructure or embedded in an online application. Online inference pipelines, see
Figure 2-14, merge precomputed features from the feature store with any on-demand
features to build a feature vector. Model-dependent transformations are then applied
to feature data before the transformed feature vector is passed to the model for pre‐
diction.
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Figure 2-14. An online inference pipeline takes the request parameters and uses them to
read any precomputed features from the feature store, compute any on-demand features,
and merge them together into a feature vector that the model makes the prediction with.

The output of an online inference pipeline is a prediction (or a batch of predictions)
and that is returned to the requesting client and also logged for model monitoring.
Typically, you log the untransformed feature values along with the prediction.

Titanic survival as a ML System built with ML pipelines
We now introduce our first example ML system, built with our three ML pipelines,
using one of the best known ML problems - predicting the probability of a passenger
surviving the Titanic. The Titanic passenger survival data is a static dataset. An ML
model is trained and evaluated on the static dataset. That makes it a good introduc‐
tory dataset for learning ML, as you skip the step of creating the training data. But we
want to move beyond the idea of just training models with a static data dump.

In Figure 2-15, we see the outline of our ML system in a Kanban board, including its
data sources, its final output (a dashboard), and the technologies used to implement
our ML system.
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Figure 2-15. The MVPS Kanban board for our Titanic Passenger Survival ML system.

We will use the Titanic Survival dataset for historical data, shown in Figure 2-16.

Figure 2-16. Our Titanic Survival Dataset. The passenger_id column uniquely identi‐
fies each row - it is not a feature. We augmented the dataset with the datetime column -
the original dataset has 1309 rows with the date of the Titanic disaster, while each new
(simulated) row has the datetime of its creation.

We will then write a synthetic data creation function that creates new passengers for
the Titanic. The simulated passenger feature values are drawn from the same distri‐
bution as the original dataset, so we will not have any problems with feature drift and
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any need to retrain our model. It’s an overly simplified example, but still a useful one
for getting started with dynamic data.

We will write both the historic and new feature data to a single feature group the fea‐
ture store with a feature pipeline written in Python using Pandas, see Figure 2-16. We
will then schedule the feature pipeline to run once per day, creating one new passen‐
ger for the Titanic for that day.

import pandas as pd
import hopsworks
BACKFILL=True
def get_new_synthetic_passenger():
    # see github repo for details
if BACKFILL==True:
    df = pd.read_csv(“titantic.csv”)
    # Remove columns that are not predictive of passenger survival
else:
    df = get_new_synthetic_passenger()
fs = hopsworks.login().get_feature_store()
fg = fs.get_or_create_feature_group(name=”titanic”, version=1,
    primary_keys=[‘id’], description=”Titanic passengers”)
fg.insert(df)

We will select the features we want to use in our model and create a feature view to
represent the input features and output labels/targets for our model:

def get_feature_view():
    fs = hopsworks.login().get_feature_store()
    fg = fs.get_feature_group(name=”titanic”, version=1)
    selected_features = fg.select_all()
    return fv.get_or_create_feature_view(name=”titanic”, version=1, 
label=[‘survived’], description=”Titanic passenger survival”)

We will use the feature view to create training data (the feature view will query the
feature data from the feature store) from the historical Titanic passenger survival
data. We will then train the model with XGBoost, a gradient-boosted decision tree
library in Python. We will store our trained model in a model registry.

fv = get_feature_view()
training_data = fv.training_data()
# perform EDA
# see github repo for details

You can discover important features obtained by joining data from a secondary data‐
set.

import XGBoost
import pandas as pd
fv = get_feature_view()
X_train, X_test, y_train, y_test = fv.train_test_split(test_ratio=0.2)
model = XGBoost()
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model.fit(X_train, y_train)
# save model to model registry

We will write a batch inference pipeline that will be scheduled to run once per day. It
will read any new simulated passengers from the feature store, download our trained
model from the model registry, and use the model to predict if the simulated passen‐
gers survived or not, outputting its predictions to a new table (a feature group in the
feature store in this example) and logging predictions to a logging feature group in
the feature store. Finally, we will write a Dashboard in Python using Gradio to show
the model’s prediction for the most recent synthetic passenger - did they survive, and
also showing historical model prediction performance.

# Model inference - make predictions on new data
y_preds = model.predict(X_test)
accuracy = classification_report(y_test, y_preds)
mr = hopsworks.login().get_model_registry()
mr.register_model(name=”titanic”, accuracy)
mr.save_model(joblib.save(model))

This ML system solves what is called a counterfactual (what-if) prediction problem.
What if there were a passenger who was male, aged 49, and traveled third class on the
Titanic - what’s the probability he would have survived? We will finally also add an
interactive UI - making it also an interactive ML system using Python and Gradio.
This enables you to directly ask the model what-if questions about hypothetical pas‐
senger survival probabilities.

# Model inference - make predictions on new data
y_preds = model.predict(X_test)
accuracy = classification_report(y_test, y_preds)
mr = hopsworks.login().get_model_registry()
mr.register_model(name=”titanic”, accuracy)
mr.save_model(joblib.save(model))

The full source code for this “Titanic passenger survival as a ML system” example is
found in the book’s source code repository in Github. To get started with this example
you will need to install the Hopsworks Python library. On Linux and Apple, this
involves calling:

pip install hopsworks

In Windows, you first need to install the twofish library, before you install the Hops‐
works library. You will also need to create an account on app.hopsworks.ai and you
will also need a Hopsworks API key so that you can securely read from and write to
Hopsworks. You can either run the first notebook, and it will prompt you to create a
Hopsworks API key or you can follow the docs. Hopsworks offers a free-forever ser‐
verless tier, with 35GB of free storage, more than enough to complete the projects in
this book.
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Summary
When building ML systems, we start with the ML pipelines and the data transforma‐
tions performed in the feature, training, and inference pipelines. We introduced a
taxonomy for data transformations for ML pipelines based around reusable features
(created by model-independent transformations in feature pipelines), model-specific
features (created by model-dependent transformations in training/inference pipe‐
lines), and real-time features (created by on-demand transformations in online infer‐
ence pipelines, that can also be applied to historical data to create features in feature
pipelines). We closed out the chapter with our first ML system - a dynamic data ver‐
sion of the Titanic passenger survival prediction problem. We showed how to build
both batch and interactive ML systems for Titanic passenger survival. In the next
chapter, we will go one step further and you will build a ML system for your neigh‐
borhood or region. You will build an air quality prediction service for the neighbor‐
hood you live in, and we will use the same frameworks used in the Titanic example -
Python, Pandas, XGBoost, and Gradio.
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1 You can support cystic fibrosis research via the Cystic Fibrosis Foundation, https://www.cff.org

CHAPTER 3

Your Friendly Neighborhood Air Quality
Forecasting Service

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 3rd chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

The first ML project we will build is an air quality forecasting service for a neighbor‐
hood you care about. We will follow the minimal viable prediction service (MVPS)
process from Chapter 2 - divide et impera (divide and conquer). Your work will be a
public service built to survive, so please put some time and care into it, and your
community will love you for it. I have a personal interest in this project as I have two
boys with cystic fibrosis, a genetic disorder that primarily affects the lungs. They were
born on the same day, two years apart, and diagnosed the same day. Anyway, I think I
speak for the whole cystic fibrosis community in saying this would be a fantastic ser‐
vice for us and many others1!
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The prediction problem our ML system will solve is to predict the air quality for a
public air quality sensor close to your home or work, or wherever. A worldwide com‐
munity of Internet of Things (IoT) hobbyists place sensors in their gardens and balc‐
onies and publish air quality measurements on the Internet. Where I live in
Stockholm, there are over 30 public sensors, and in my home city of Dublin, there are
over 40. There is a world air quality index website where you can find a sensor on the
map to build your ML system on. Pick one that has both (1) historical data - we will
train a ML model on the historical data, so if you have a few years of data that is great,
and (2) produces reliable measurements (some sensors are turned off for periods of
time or malfunction). A reliable sensor will enable your ML system to continue to
collect measurement data, enabling you to retrain and improve the model as more
data becomes available. Even though you will provide a free public service to your
community, it won’t cost you a penny - we will run the system on free serverless serv‐
ices (GitHub and Hopsworks).

Air quality prediction is a pretty straightforward ML problem. We will model the pre‐
diction problem as a regression problem - we predict the value of PM2.5. PM2.5 is a
fine particulate measure for particles that are 2.5 micrometers or less in diameter, and
high levels increase the risk of health problems like low birth weight, heart disease,
and lung disease. High levels of PM2.5 also reduces visibility, causing the air to
appear hazy. What are the features we will use to predict the level of PM2.5? PM2.5 is
correlated with wind speed/direction, temperature and precipitation, so we will use
weather forecast data to predict air quality as measured in PM2.5. This makes sense
because air quality is generally better when the wind blows in a particular direction -
if you live beside a busy road, wind direction is crucial. Air quality is often worse in
colder weather as cold air is denser and moves slower than warm air, and in cities
where more people may drive than bike when commuting. Even parts of India that
don’t experience cold winter weather have worse air quality in winter months.

But wait. You may have read that air quality forecasting is a solved problem. In 2024,
Microsoft AI built Aurora, a deep learning model that predicts air pollution for the
whole world. Microsoft’s use of AI was championed as a huge step forward compared
to the physical models of air quality, computed on high-performance computing
infrastructure by the European Union’s Copernicus project. However, as of mid-2024,
if you examine the performance of Aurora in a city, such as Stockholm, you will see
its predictions are not very accurate compared to the actual air quality sensor read‐
ings you can find on https://waqi.info. Your challenge is to build a ML system that
produces better air quality predictions than Aurora for the location of your chosen air
quality sensor at a fraction of its cost. In this project, better quality data and a deci‐
sion tree ML model will outperform deep learning.

Finally, every project benefits from a wow factor. We will sprinkle some GenAI dust
on the project by making your air quality “friendly” by giving it a voice-driven UI
powered by an open-source LLM.
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ML System Overview
In my course at KTH, students built a unique ML system that solved a prediction
problem using a dynamic data source. But before they started their project, they had
to get it approved, and I found that the simplest way to do so was with a prediction
service card, see Table 3-1. The card is a slimmed down version of the Kanban board
from Chapter 2, omitting the implementation details.

Table 3-1. ML System Card for our Air Quality Forecasting Service

Dynamic Data Sources Prediction Problem UI or API Monitoring
Air Quality Sensor Data:
https://aqicn.info 
Weather Forecasts: 
https://open-meteo.com/

Daily forecast of the level of PM2.5 for
the next 7 days at the position of an
existing air quality sensor.

A web page with graphs
and a LLM-powered UI in
Python.

Hindcast graphs show
prediction performance
of our model.

The ML system card succinctly summarizes its key properties, including the data
sources and the prediction problem it solves. For example, with air quality, there are
many possible air quality prediction problems, such as the predicting PM10 levels
(larger particles that include dust from roads and construction sites), and NO2
(nitrogen dioxide) levels (pollution mostly from internal combustion engine vehi‐
cles). The prediction service card also includes the data sources, useful as a feasibility
test that the data exists and is accessible for your prediction problem. You should also
define how the predictions produced by our ML system will be consumed - by a UI
or API. A UI is a very powerful tool to communicate the value of your model with
stakeholders, and it is now straightforward to build functional UIs in Python. In our
ML system, we will use LLMs to improve the accessibility of our service - you should
be able to ask the Air Quality Forecasting Service questions in natural language. And,
finally, you should outline how you will monitor the performance of your running
ML system to ensure it is performing as expected.

We will use open-source and free serverless services to build our ML system - GitHub
Actions/Pages and Hopsworks. We will write the following four Jupyter notebooks in
Python:

1. create feature groups to store our data and backfill them with historical data,
2. a daily feature pipeline to retrieve new data and store it in the feature store,
3. a training pipeline to train a XGBoost regression model and save it in the model

registry,
4. a batch inference pipeline to download the model and make predictions on new

feature data, read from the feature store, producing air quality forecast/hindcast
graphs.
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We will also use a number of libraries in Python and other technologies to build the
system, including:

• REST APIs to read data from our data sources,
• Pandas for processing the data,
• Hopsworks to store feature data and models,
• GitHub Actions to schedule our notebooks to run daily, and
• GitHub Pages as a dashboard web page containing the forecasts/hindcast graphs.

We will also write a Streamlit Python application with a voice and text-powered UI,
backed by the open-source Whisper transformer model that translates voice to text
and a fine-tuned version of the open-source Llama-3-8B LLM that translates from
text to function calls on our ML system.

That is a lot of technologies for our first project, but don’t be overawed. Just like
much great music can be made with three chords, many great ML systems can be
made from a feature pipeline, a training pipeline, and an inference pipeline.

Air Quality Data
Thousands of hobbyists around the world have installed air quality sensors and made
their measurements publicly and freely available. You can locate many of these air
quality sensors with both historical and live data using the map on the World Air
Quality Index project, see Figure 3-1. The website is an aggregator of sensor data
from many sources, but as a community service it provides no guarantees on the data
quality.
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Figure 3-1. On waqi.info, you can navigate on the map to the location of the air quality
sensor you will use for this project. You will be redirected to https://aqicn.org where you
find the sensor API details and historical data for the sensor.

In Figure 3-2, you can see that I have selected a sensor in Stockholm that has both live
and historical data available. I chose it because it is very close to the Hopsworks
office. You should pick a sensor either close to you or somewhere special to you.
When you click on the link to your sensor/location of choice, it will redirect you to
another website, https://aqicn.org - the website that provides real-time air pollution
index and API for 100+ countries.
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Figure 3-2. We can see here that there is available historical data for “past 12 months
PM2.5” for this sensor. A few small gaps in sensor readings like I have here is generally
ok.

In my case, for Stockholm Södermalm, it redirected me to https://aqicn.org/station/
sweden/stockholm-hornsgatan-108-gata. Scroll down the page and you will find a
button to download the historical data for that sensor, see Figure 3-4. If you can’t find
the download link for the historical measurements on your sensor’s webpage, you can
probably find them from here https://aqicn.org/historical. If you still can’t find the
download link, pick another sensor. Unfortunately, as of mid 2024, there is no API
call available to download historical data, so you have to perform this step manually.
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Figure 3-3. On the URL with our sensor’s data at aqicn.org, we can export the historical
data by clicking on the “Download this data (CSV format)” button.

Download the CSV (comma separated values) file. I renamed mine to stockholm-
hornsgatan-108.csv. For your sensor, you should rename the CSV file you down‐
loaded if it has spaces or unusual characters. You should open the CSV file in a text
editor to check if its column names are as expected. Our backfilling Python program
will read the CSV file into a Pandas DataFrame and expect that the CSV file has a
header line and 2 of the columns are pm25 and date. If there are more columns, that
is ok. However, some files do not have a pm25 column - instead they have min/max/
median/stdev daily measurements for PM2.5. The easiest way to fix this is to just
rename the median column to pm25 in the header in your CSV file.

You can now create the GitHub repository for the project by forking the book’s Git‐
Hub repository at https://github.com/featurestorebook/mlfs-book to your GitHub
account. If you don’t have a GitHub account, you should create one - they are cur‐
rently free. You should move your CSV file to the data/ directory in your forked
repository and then commit and push it to GitHub. I ran the following commands to
achieve this:
git clone git@GitHub.com:jimdowling/fsbook.git

cd fsbook/data
mv ~/Downloads/stockholm-hornsgatan-108.csv .
git add stockholm-hornsgatan-108.csv
git commit -am ‘Adding my historical sensor data’
git push

The CSV files are quite small (mine is 7.3KB), so there is no problem adding them to
GitHub. Files of GBs or larger are not suitable for storage in source-code repositories
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2 Large files should be stored in highly available, scalable distributed storage, such as an S3 compatible object
store. These are also currently the cheapest place to store large files.

like GitHub2. When working in Python, we strongly recommend that you create a
virtual environment for the book, using a Python dependency management frame‐
work such as conda, poetry, virtualenv, or pipenv. The dependencies introduced for
our project can be installed in your virtual environment. See the book’s source code
repository for details on setting up a virtual environment and installing your Python
dependencies for this project.

Working with Hopsworks
You will need to create an account on https://app.hopsworks.ai, as we will use Hops‐
works as the data layer that stores the outputs of our ML pipelines. You can create a
free account on Hopsworks with a Gmail account, a GitHub account, or an email
address. You will receive 50GB of free-forever storage and a single project (your
project name needs to be unique).. You need to create an API key in Hopsworks, see
Figure 3-1. I recommend that you save it to data/hopsworks-api-key.txt.

Figure 3-4. Create a Hopsworks API key from the user interface, then save it in a file
(data/hopsworks-api-key.txt - you should not commit this file to GitHub). Select all
scopes when you are testing, then restrict the scopes for a production HOPS‐
WORKS_API_KEY.
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Your ML pipeline programs can then read the API key securely from the file and use
it to login to Hopsworks. You will also need to install the Hopsworks library, used by
your ML pipelines:

pip install hopsworks

Exploratory Dataset Analysis
Before we jump in and start building, we should take some time to understand the
data we will work with. In general, there are six properties or dimensions of any data
source that you should understand before using it to solve a prediction problem:

1. Validity
2. Accuracy
3. Consistency
4. Uniqueness
5. Update Frequency
6. Completeness

Let’s now examine our air quality and weather data sources through this lens.

We primarily use Jupyter notebooks, instead of Google Colabatory
(Colab) in this book (although many notebooks will run fine on
Colab. Some notebooks won’t run because they import Python
modules that we write and Colab currently does not support clon‐
ing a full GitHub repository and importing those modules. Python
modules are inevitable when you modularize your ML system into
FTI pipelines, because there will often be code that is common to
more than one pipeline. For example, in this chapter the matplotlib
graphing code is used in both training and batch inference pipe‐
lines. If you were to duplicate the code in the both pipelines, you
end up with non-DRY (Don’t-Repeat-Yourself) code, which is bad
software engineering practice. When you have non-DRY code, you
could update code in one notebook, but forget to update it in
another notebook, at best, leading to frustration and at worst,
introducing bugs. That all said, we will use Colab when we need a
free GPU.

Air Quality Data
How does our air quality data source rank along these six properties of dataset qual‐
ity? We will start with data validity, a measure of how accurately the data reflects what
it is intended to measure. We focus on measuring PM2.5 rather than PM10 or NO2,
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as, according to the UN - “PM2.5 … poses the greatest health threat “, according to
current knowledge.

Next up is data accuracy that refers to how close the measurements are to the true
value. The aqicn.org website tells me that my sensor’s data in Stockholm comes from
“SLB·analys - Air Quality Management and Operator in the City of Stockholm” and
the “European Environment Agency”. Therefore, I am inclined to trust the data accu‐
racy. In contrast, in Figure 3-6, you can see a different sensor in Stockholm main‐
tained by the “Citizen Science project sensor community” that started malfunctioning
producing the maximum possible PM2.5 readings some time around late 2022 – I can
attest that the air quality is not actually that bad in the Solna district near Stockholm.

Figure 3-5. This sensor is producing incorrect air quality readings (dark boxes at the
top). It appeared to work correctly until it started malfunctioning in late 2022 / early
2023.

Returning to the stockholm-hornsgatan-108 dataset, we claim that the data is unique.
After a web search, I am not aware of any other public air quality sensor on that
street. Looking at Figure 3-4, I can see that the data is mostly complete, quite consis‐
tent (the colors indicating air quality follow an expected pattern, unlike those in Fig‐
ure 3-6), and the data is timely - it arrives hourly. One note of warning: the names of
the columns in the CSV file are not always consistent. In some locations, I have seen
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min/max/median PM2.5 values instead of a single value - in this case, I would
rename the median column to pm25.

In general, you should also examine the data in a notebook to check its completeness.
In the following code snippet, we read the CSV file as a Pandas DataFrame and then
we keep only those columns we need from our air quality dataset (the date, and our
target, pm25):

  # you may need to rename columns in your CSV file to 'pm25' and 'date'
df = pd.read_csv(
"../../data/stockholm-hornsgatan-108.csv",
parse_dates=['date'], skipinitialspace=True)
air_quality_df = df[["date", "pm25"]]
air_quality_df["country"] = "sweden"
air_quality_df["city"] = "stockholm"
air_quality_df["street"] = "stockholm-hornsgatan-108-gata"
air_quality_df["url"] = "https://api.waqi.info/feed/@10009"

We also store the country, city, street, and url for the sensor. We will use the city col‐
umn to join our air quality data with the weather features for the same date. The
country, city, street, and url

columns are helper columns that are used when we create a dashboard with air quality
forecasts. Although their values will be duplicated over all rows for the same sensor,
they will not consume much storage space on disk, as our feature store will use col‐
umnar compression.

The second part of dataset completeness is to check for missing data. You can call the
isna() function on the DataFrame to list any missing values. However, that may pro‐
duce a huge number of rows as output, so instead we will apply a sum() to the result
of isna(), summarizing how many values are missing for each column in df:

df.isna().sum()

You can then remove any rows with any missing columns by calling:

df.dropna(inplace=True)

Removing missing observations is reasonable at this point, as there will be no point in
later collecting data where either the date or target is missing.

Often, at this point, we would typically dive deeper into identifying data sources and
candidate features for our model. We would try to identify features that have predic‐
tive power for the target (PM2.5). If there are not enough samples for deep learning
models to be performant, we might try to engineer features that capture domain
knowledge about our prediction problem. However, we will skip those steps in this
case, to make it a simpler prediction problem. We will use weather features for our
model as they have good predictive power for PM2.5 levels. There will be room for
improvement in the model we will train, but right now our goal is to build an MVPS
for our air quality forecasting problem.
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Weather Data
We will use OpenMeteo (https://open-meteo.com) to download both historical
weather data and weather forecast data for the same location as your chosen air qual‐
ity sensor. The weather data from OpenMeteo ranks very high along all our six axes
of dataset quality. OpenMeteo provides two different free APIs: one to download his‐
torical weather data, and one for weather forecasts. If you are not sure of the best city
to use for your weather data, you can search for available weather locations at https://
open-meteo.com/en/docs/historical-weather-api. In contrast to air quality data,
which is very localized (two neighboring streets could have very different air quality
conditions), weather data at the city or even region level is probably good enough for
your model.

We will restrict ourselves to those weather conditions that are universally available at
weather stations and have the highest predictive power for air quality - precipitation,
wind speed, wind direction, and temperature. The OpenMeteo APIs expect longitude
and latitude as parameters for your weather location. We use the geopy library to
resolve the longitude and latitude for a city name that you need to specify (you may
need to longitude and latitude manually, if they block your IP).

In the following code snippet using the historical API, we need to provide the loca‐
tion and time range as longitude, latitude, start_date, and end_date parameters:

    url = "https://archive-api.open-meteo.com/v1/archive"
    params = {
        "latitude": latitude,
        "longitude": longitude,
        "start_date": start_date,
        "end_date": end_date,
        "daily": ["temperature_2m_mean", "precipitation_sum", 
"wind_speed_10m_max", "wind_direction_10m_dominant"]
    }
    responses = openmeteo.weather_api(url, params=params)

The weather forecast data will be retrieved by a similar REST call:

    url = "https://api.open-meteo.com/v1/ecmwf"
    params = {
        "latitude": latitude,
        "longitude": longitude,
        "daily": ["temperature_2m", "precipitation", "wind_speed_10m", 
"wind_direction_10m"]
    }
    responses = openmeteo.weather_api(url, params=params)

However, you should note that our forecast API call receives hourly forecasts but our
historical API call retrieves aggregate data over a day (i.e., mean temperature, sum of
precipitation, max wind speed). This is not ideal, but is good enough for our pur‐
poses (we did say the model could be improved!).
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There are two utility functions, get_historical_weather() and get_weather_fore
cast(), defined in weather-util.py that return the weather data as Pandas DataFrames:

    import util    
    historical_weather_df = util.get_historical_weather("Stockholm", 
"2019-01-01",  "2024-03-01")
    weather_forecast_df = util.get_weather_forecast("Stockholm")

Note that these functions make network calls, so the code may fail
if the program does not have Internet connectivity. The same holds
for the function we will use to retrieve real-time air quality data.

Creating and Backfilling Feature Groups
We will store our featurized DataFrames in feature groups in the Hopsworks Feature
Store. To run the code in this section, you will need to create an account on app.hops‐
works.ai, as described in Chapter 2. We will have two feature groups, one for air qual‐
ity data, containing the observations of PM2.5 values and the timestamps for those
observations, and another feature group to store both the historical weather observa‐
tions as well as the weather forecast data. The feature group stores the incremental set
of features created over time. Training and inference steps can later use a feature
query service to read a consistent snapshot of feature data from one or more feature
groups to create a model or to make predictions, respectively.

air_quality_fg = fs.get_or_create_feature_group(
    name='air_quality',
    description='Air Quality observations daily',
    version=1,
    primary_key=['city', ‘street’], 
    expectation_suite = aq_expectation_suite,
    event_time="date",
)    
air_quality_fg.insert(df_air_quality)

We call get_or_create_feature_group, instead of just create_feature_group, as
we want the notebook to be idempotent (create_feature_group fails if the feature
group already exists).

weather_fg = fs.get_or_create_feature_group(
    name='weather',
    description='Historical daily weather observations and weather forecasts',
    version=1,
    primary_key=['city'], 
    event_time="date",
    expectation_suite = weather_expectation_suite
) 
weather_fg.insert(df_weather)
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Notice that both feature groups define an expectation_suite parameter. This is a set
of data validation rules that we declaratively attach once to the feature group, but are
applied every time we write a DataFrame to the feature group. Let’s double click on
data validation now.

Data Validation
We want to build a ML system we can trust, so we will validate data retrieved from
the air quality and weather data sources. This simple test would have helped identify
faults in the sensor from Figure 3-6 from the moment they started happening. Great
Expectations is a popular open-source library for declaratively specifying data valida‐
tion rules. In the following code snippet, we define an expectation in Great Expecta‐
tions that checks all the values in the pm25 column in our DataFrame, df, to make
sure that the.scraped values are neither negative nor greater than 500 (a reasonable
upper limit for the expected PM2.5 values for my location):

import great_expectations as ge
aq_expectation_suite = ge.core.ExpectationSuite(
    expectation_suite_name="aq_expectation_suite"
)
aq_expectation_suite.add_expectation(
    ge.core.ExpectationConfiguration(
        expectation_type="expect_column_min_to_be_between"
        kwargs={
            "column":"pm25",
            "min_value":0.0,
            "max_value":500.0,
            "strict_min":True
        }
    )
)

We will see later in Chapter 6, how you can easily add a notification (like Slack or
email) if a data validation rule fails and what to do about it. In the book’s source code
repository, there are also similar expectations defined for the weather data on the
temperature_2m and precipitation columns.

Feature Pipeline
We just presented the program that creates the feature groups and backfills them with
historical data. But we also need to process new data daily. We could extend our pre‐
vious program and parameterize it to either run in backfill mode or in normal mode.
But, instead we will write the daily feature pipeline as a separate program - this sepa‐
rates the concerns of creating the feature groups and backfilling them from daily
updates to the feature groups.
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The feature pipeline will be scheduled to run once per day, and it performs the fol‐
lowing tasks:

• reads today’s PM2.5 measurement,
• reads the today’s weather data measurements,
• reads the weather forecast data for the next seven days,
• inserts all of this data into the air quality and weather feature groups, respectively.

There is no feature engineering required in this example. We will read all of the data
as numerical feature data, and will not encode that data before it is written to feature
groups. The code shown for downloading the sensor readings and weather forecasts
is found in the functions/util.py module:

url = f"{aqicn_url}/?token={AQI_API_KEY}"
data = trigger_request(url)
aq_today_df = pd.DataFrame()
aq_today_df['pm25'] = [data['data']['iaqi'].get('pm25', {}).get('v', None)]
aq_today_df['city'] = city
..
aq_today_df['date'] = datetime.date.today()
air_quality_fg.insert(df_air_quality)
url = "https://api.open-meteo.com/v1/ecmwf"
params = {
        "latitude": latitude,
        "longitude": longitude,
        "hourly": ["temperature_2m", "precipitation", 
"wind_speed_10m", "wind_direction_10m"]
}
responses = openmeteo.weather_api(url, params=params)
hourly_df = # populate with responses data
daily_df = hourly_df.between_time('11:59', '12:01')
weather_fg.insert(daily_df)

Our remote API calls to aqicn and openmeteo return the air quality and weather
forecast data, respectively, and we put the returned data in Pandas DataFrames that
are then inserted into their respective feature groups. When you insert the Data‐
Frame to the feature group, its data validation rules will be executed, as shown in Fig‐
ure 3-7. You can set a policy on whether to fail the ingestion or allow the ingestion
and trigger an alert, see Chapter 5 for more details.
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Figure 3-6. You can inspect the result of your feature pipeline run in the Hopsworks UI,
seeing the number of new/updated/deleted rows and whether data validation rules
passed or not.

You can now see the results of your feature pipeline in the Hopsworks UI. Log in to
https://app.hopsworks.ai, using the account you created earlier. In the Hopsworks
UI , navigate to feature groups and inspect the data you inserted. Try out Data pre‐
view to see the sample rows of data ingested. Have a look at the Feature statistics com‐
puted over the data inserted and the data validation results.

Training Pipeline
We decided that we would model PM2.5 as a regression problem, and we know we
will only have a few hundred or possibly a thousand rows or so. This is decidedly in
the realm of small data, so we will not use deep learning. Instead, we will use the go-
to ML framework for small data - XGBoost (eXtreme Gradient Boosting), an open-
source gradient-boosted decision tree framework. XGBoost works well out of the box,
and we won’t do any hyperparameter tuning here - we will leave it as an exercise for
you to squeeze more performance out of the model.

We will start by selecting the features we are going to use in our model. For this, we
will use the Feature View in Hopsworks. A Feature View defines the schema for a
model - its input features and output targets (or labels). Hopsworks provides a
Pandas-like API for selecting features from different feature groups and then joining
the selected features together using a query object. The select() and select_all() meth‐
ods on a feature group returns a query object that provides a join() method (more
details in Chapter 5). When you create the feature view, you also specify which of the
selected features are the label columns. The code for selecting the features from the
feature groups, joining them together using the common ‘city’ column, and creating
the feature view looks as follows:
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selected_features = air_qual-
ity_fg.select(['pm2_5']).join(weather_fg.select_all( on=['city’])
feature_view = fs.create_feature_view(
    name='air_quality_fv',
    version=version,
    labels=['pm2_5'],
    query=selected_features
)

With a feature view object, you can now create training data:

X_train, X_test, y_train, y_test = feature_view.train_test_split(test_size=0.2)

Here we read training data as Pandas Dataframes, randomly split (80/20) into train‐
ing set features (X_train), training set labels (y_train), and test set features (X_test)
and test set labels (y_test). In a single call, train_test_split reads the data, performing a
point-in-time correct JOIN of the air quality and weather data, and then performs a
scikit-learn random split of the data into features and labels for both training and test
sets. The reason I chose a random split over a time-series split is that our chosen fea‐
tures are not time-dependent. A useful exercise would be to improve this air quality
model by adding features related to air quality (historical air quality, seasonality fac‐
tors, and so on) and change to a time-series split.

We can now train our model using XGBoostRegressor. We simply fit our model to our
features and labels from the training set, using the default hyperparameters for
XGBoostRegressor:

xgb_regressor = XGBRegressor()
clf.fit(X_train, y_train)

Training should only take a few milliseconds. Now you can evaluate the trained
model, clf, using the features from our test set to produce predictions, y_pred:

y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred, squared=False)
r2 = r2_score(y_test, y_pred)
plot_importance(clf, max_num_features=4)

As we are modeling PM2.5 prediction as a regression problem, we are using mean-
squared error (MSE) and R squared error as metrics to evaluate model performance.
An alternative to MSE is the mean absolute error (MAE), but MSE punishes a model
more if its predictions are wildly off from the outcome compared to MAE. With the
scikit-learn library, it is just a method call to compute one of many different model
performance metrics when you have your outcomes (y_test) and your predictions
(y_pred) readily available. We also calculate feature importance, that we later save as
a .png file.

Now, we need to save the output of this training pipeline, our trained model, clf, to a
model registry. We will use the Hopsworks model registry. This process involves first
saving the model to a local directory, and then registering the model to the model
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registry, including its name (air_quality_xgboost_model) and description, its evalua‐
tion metrics, and the feature view used to create the training data for the model:

model_dir = "air_quality_model"
os.mkdirs(model_dir + "/images")
clf.save_model(model_dir + "/model.json")
plt.savefig(model_dir + "/images/feature_importance.png")
mr = project.get_model_registry()
mr.python.register_model(
    name="air_quality_xgboost_model", 
    description="Air Quality (PM2.5) predictor."
    metrics={ "MSE": mse, "r2": r2 },
    feature_view = feature_view,
    model_dir=model_dir
)

The model registry client extracts the schema and lineage for the model using the fea‐
ture view object. Any other files in the local directory containing the model will also
be uploaded, and any .png/.jpeg files in the images subdirectory (feature_impor‐
tance.png) will be shown in the model evaluation images section, see Figure 3-8.

Figure 3-7. Our XGBoost regression model is stored in the model registry, along with
model metrics, and two model evaluation images.

Notice that every time we register a model, we will get a new version of the model.
Unlike feature groups and feature views, we don’t need to provide the version for the
model when creating it - a monotonically increasing version number will be assigned
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to the newly registered model. With our trained model in the model registry, we can
now write our batch inference pipeline that will generate our air quality dashboard.

Batch Inference Pipeline
The batch inference pipeline is a Python program that downloads the trained model
from the model registry, fetches the weather forecast feature data, and uses the model
and the weather forecast data to predict air quality for the next seven days. We will
make seven different predictions, one for each of the seven days. We will create a
graph of the air quality forecasts using plotly, save that graph as a PNG file, and push
that PNG file to a GitHub repository that contains a public website with GitHub
pages. GitHub pages has a free tier that allows you to build webpages, dashboards,
personal blogs, and you get a dedicated domain name for your website.

First, we need to download our model from the model registry and load it using the
XGBRegressor object:

model_ref = mr.get_model(
    name="air_quality_xgboost_model",
    version=1,
)
saved_model_dir = model_ref.download()
retrieved_xgboost_model = XGBRegressor()
retrieved_xgboost_model.load_model(saved_model_dir + "/model.json")

Then, we retrieve a batch of inference data (our weather forecast data for the next
seven days) using the feature view.

batch_df = feature_view.get_batch_data(start_time=today)

The batch_df DataFrame now contains the weather forecast features for the next
seven days. With these features, we can now make the predictions using the model:

for index, row in batch_df.iterrows():
batch_df["pm25_predicted"] = model.predict(row)
batch_df["days_before_forecast"] = index

We store the predictions in the pm25_predicted column of batch_df along with the
number of days before the forecast. There are ten forecasts for each day.. The first one
is seven days beforehand and the last forecast is 1 day beforehand. This
days_before_forecast column will help us evaluate the performance of our model
depending on how many days in advance it is forecasting. We are going to save
batch_df to the feature store, to be used to monitor the features/predictions, as
batch_df includes the predictions, feature values, and helper columns.

monitoring_fg = fs.get_or_create_feature_group(
    name='monitoring_aq',
    description='Monitor Air Quality predictions’,
    version=1,

Batch Inference Pipeline  | 95

https://plotly.com/


    primary_key=['city', ‘street’]
)  
monitoring_fg.insert(batch_df)

We also have to plot our air quality prediction dashboard. We will use the plotly
library:

import plotly.express as px
fig = px.line(batch_df , x = "date", y = "pm25_predicted", title = "..")
….
fig.write_image(file="forecast.png", format="png", width=1920, height=1280)

We will use a GitHub Action to publish the forecast.png file on a webpage, as
described in the next section, see Figure 3-7.

Figure 3-8. The GitHub Pages website contains our air quality forecast as a Plotly chart
and the hindcast (shown here) that shows both the predicted PM2.5 and actual PM2.5
values.

Finally, we create some hindcast PNG files that compare our model’s predictions,
from the monitoring feature group data, and the outcomes, from the air quality fea‐
ture group data. See the batch inference pipeline notebook in the book’s source code
repository for details.

Running the Pipelines
To get started, you should run the Jupyter notebooks on your laptop to ensure they
work as expected. Run them from the first cell to the last cell. You should switch to
the Hopsworks UI after running each notebook to see the changes made - such as
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creating a feature group, writing to a feature group, creating a feature view, and saving
a trained model to the model registry.

First, run the feature backfill notebook (1_air_quality_feature_backfill.ipynb). This
will create the air_quality and weather feature groups. You should then run the fea‐
ture pipeline (2_air_quality_feature_pipeline.ipynb) and check the feature groups to
see if new rows have been added to them as expected. Then you can train your model
by running the model training pipeline (3_air_quality_training_pipeline.ipynb) -
check the feature view (air_quality_fv) was created and the trained model is in the
model registry. Finally, test that your batch inference pipeline (4_air_qual‐
ity_batch_inference.ipynb) works as expected - it should have created a aq_predictions
feature group. If you find a bug, please post a Github issue. If you can improve the
code, please file a PR (pull request). If you need help, please ask questions on the
serverless-ml discord channel linked in the book’s GitHub repository.

Scheduling the Pipelines as a GitHub Action
We will use GitHub Actions to schedule the feature and batch inference pipelines, and
build our dashboard using GitHub Pages. As of 2024, GitHub’s free tier gives you
2,000 free minutes of compute every month. That is more than enough to run our
feature and batch inference pipelines. You can run the training pipeline on a Jupyter
notebook on your laptop - we won’t run it on a schedule for now. For our UI, we will
use GitHub Pages (that hosts webpages for your GitHub repository), and in their free
tier, as of 2024, webpages cannot be larger than 1GB and pages have a soft bandwidth
limit of 100 GB per month. This should be more than enough for this project.

There are many different platforms that can be used to schedule
our pipelines. In my ID2223 course, students could choose between
modal.com and GitHub Actions. Modal’s free tier is generous and
its developer experience is great, but Modal requires a credit card
for access and can’t schedule notebooks (only Python programs).
There are many other serverless compute platforms that offer
orchestration capabilities that you could use instead to run the
Python programs including Google Cloud Run, Azure Logic Apps,
AWS Step Functions, fly.io, any managed Airflow platform, Dag‐
ster, and Mage.ai.

So, what is GitHub Actions? It is a continuous integration and continuous deploy‐
ment (CI/CD) platform that allows you to automate your build, test, and deployment
pipelines. GitHub Actions is typically used to schedule tests (unit tests or integration
tests) and deploy artifacts. In our case, our feature and batch inference pipelines can
be considered deployment pipelines that create features in the feature store and build
our dashboard artifacts for GitHub Pages.
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For your GitHub Action to run successfully, you need to set the HOPS‐
WORKS_API_KEY as a repository secret, so that your pipelines can authenticate
with Hopsworks, see Figure 3-10.

Figure 3-9. To enable your GitHub Actions to run, you will need to create a repository
secret for the HOPSWORKS_API_KEY.

We can then proceed to define the YAML file containing the GitHub Actions, found
in the GitHub repository at .github/workflows/air-quality-daily.yml. You can run the
workflow in the GitHub Actions UI for your repository by clicking on Run workflow,
see Figure 3-10.
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Figure 3-10. You can test running your GitHub Action manually by clicking on the “Run
workflow” button. To get there, navigate to the “Actions” tab in your repository, and
select the air-quality-daily action.

The workflow code shows the actions taken by the workflow. Firstly, the scheduled
execution of this action has been commented out. When you have successfully run
this GitHub action without errors, you can uncomment the “schedule” and “- cron”
lines near the beginning of the file and this GitHub Action will then run daily at 6:11
am.

The steps taken by the workflow are as follows. First, the workflow will run the steps
on a container that uses the latest version of Ubuntu. Second, it will checkout the
code in this GitHub repository to a local directory in the container and change the
current working directory to the root directory of the repository. Third, it will install
Python. Fourth, it will install all the Python dependencies in the requirements.txt file
using pip (after upgrading pip to the latest version). Finally, it will run the feature
pipeline followed by the batch inference pipeline, after having set the HOPS‐
WORKS_API_KEY as an environment variable. Our GitHub actions execute our fea‐
ture pipeline and batch inference notebooks with the help of the nbconvert utility
that first transforms the notebook into a Python program and then runs the program
from the first cell to the last cell. The HOPSWORKS_API_KEY environment variable
is set so that these pipelines can authenticate with Hopsworks.

on:
  workflow_dispatch:
  #schedule:
  #  - cron: '11 6 * * *'
jobs:
  test_schedule:
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    runs-on: ubuntu-latest
    steps:
      - name: checkout repo content
        uses: actions/checkout@v4
      - name: setup python
        uses: actions/setup-python@v4
        with:
         python-version: '3.10.13'
      - name: install python packages
        run: |
          python -m pip install --upgrade pip
          pip install -r requirements.txt
      - name: execute pipelines
        env: 
          HOPSWORKS_API_KEY: ${{ secrets.HOPSWORKS_API_KEY }}
        run: |
          cd notebooks/ch03
jupyter nbconvert --to notebook --execute 2_air_quality_feature_pipeline.ipynb
jupyter nbconvert --to notebook --execute 4_air_quality_batch_inference.ipynb

Building the Dashboard as a GitHub Page
Our GitHub Action also includes steps to commit and push the PNG files created by
the batch inference pipeline to our GitHub repository, and then to build and publish
a GitHub Page containing the Air Quality Forecasting Dashboard (with our PNG
charts). The GitHub action YAML file contains a step called git-auto-commit-action
that pushes the new PNG files to our GitHub repository and rebuilds the GitHub
Pages. You shouldn’t need to change this code.

      - name: publish GitHub pages
        uses: stefanzweifel/git-auto-commit-action@v4 
        [ … ]

Note, that every time the action runs, in your GitHub history it will be shown as a
commit by you to the repository.

In order for the git-auto-commit-action step to be able to run successfully, you first
have to enable GitHub pages in your repository.
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Figure 3-11. You have to enable GitHub Pages for your forked repository. Select the /docs
directory and click on the save button to create the GitHub Page for your repository.

And that’s it. Once you have the GitHub Page enabled, and your GitHub Action runs
your workflow every day, your Dashboard will be updated daily with the latest air
quality forecasts (as shown earlier in Figure 3-8)!

Function Calling with LLMs
You now should have a working air quality forecasting system powered by ML. But,
we want to make it even more accessible by adding a voice-activated UI. For this, we
are going to use two different open-source transformer models (see Figure 3-12 and
the notebook 5_function_calling.ipynb in the repository):

• Whisper transcribes audio into text - users speak and ask a question to our appli‐
cation and the model will output what the user said as text,

• the transcribed text will then be fed into a fine-tuned Llama-3-8B LLM that will
return one function (from a set of four available functions) including the param‐
eter values to that function.

• The chosen function will be executed returning either historical air quality meas‐
urements or a forecast for air quality and that output will be fed back into the
LLM as part of the prompt along with your original voice-issued question to the
same Llama-3-8B LLM.

• The LLM will return a human-understandable answer about the air quality (is it
safe or healthy) that is not just about the PM2.5 levels.
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Figure 3-12. Our Voice-Activated UI uses Whisper to transcribe a user query that trig‐
gers a function to be executed that will either return historical air quality measurements
from the feature group or forecasts from the model. Those results are passed again to the
LLM that answers the original question but the prompt now also includes the external
context information provided by our Air Quality ML system. This RAG without a vector
database.

We are building our voice-activated UI using the paradigm of RAG (retrieval aug‐
mented generation) using function calling with LLMs. With LLMs, the user enters
some text, called the prompt, and the LLM returns with a response. For chat-based
LLMs, like OpenAI’s ChatGPT, the response is usually a conversational style
response. Function calling with LLMs involves the user entering a prompt, but now
the LLM will respond with a JSON object containing the function to execute (from a
set of available functions) along with the parameters to pass to that function. We will
use a LLM that is fine-tuned to return JSON objects describing the functions. The
returned JSON can then be parsed and used to execute one of our predefined func‐
tions:

• get_future_data_for_date
• get_future_data_in_date_range
• get_historical_air_quality_for_date
• and get_historical_data_in_date_range

That is, users will not be able to get answers to arbitrary questions about air quality -
only historical readings and air quality forecasts. You can ask questions like “what
was the air quality like last month?” or “what will the air quality be like on Tuesday?”.

After you pass the list of function declarations in a query to the function-calling
LLM, it tries to answer the user query with one of the provided functions. The LLM
understands the purpose of a function by analyzing its function declaration. The
model doesn’t actually call the function. Instead, you parse the response to call the
function that the model returns.

Here are the two forecast functions that we provide in the prompt. The other two his‐
torical functions are not shown here as they have similar definitions. Notice that they
are quite verbose with human understandable parameter names, a description, and
descriptions of all arguments and return values.
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def get_future_data_for_date(date: str, city_name: str, feature_view, model) -> 
pd.DataFrame:
    """
    Predicts future PM2.5 data for a specified date and city using a given fea-
ture view and model.

    Args:
        date (str): The target future date in the format 'YYYY-MM-DD'.
        city_name (str): The name of the city for which the prediction is made.
        feature_view: The feature view used to retrieve batch data.
        model: The machine learning model used for prediction.

    Returns:
        pd.DataFrame: A DataFrame containing predicted PM2.5 values for each 
day starting from the target date.

    """

def get_future_data_in_date_range(date_start: str, date_end: str, city_name: 
str, feature_view, model) -> pd.DataFrame:
    """
    Retrieve data for a specific date range and city from a feature view.

    Args:
        date_start (str): The start date in the format "%Y-%m-%d".
        date_end (str): The end date in the format "%Y-%m-%d".
        city_name (str): The name of the city to retrieve data for.
        feature_view: The feature view object.
        model: The machine learning model used for prediction.

    Returns:
        pd.DataFrame: A DataFrame containing data for the specified date range 
and city.
    """

We designed the following prompt template for the function calling query to our
LLM as follows. Firstly, we define the available functions, then include the JSON rep‐
resentation of those functions including their parameters, types, and descriptions.
The fine-tuned LLM should also be hinted about which function to choose and not to
return a function unless it is confident one of them matches the user query.

prompt = f"""<|im_start|>system
You are a helpful assistant with access to the following functions:

get_future_data_for_date
get_future_data_in_date_range
get_historical_air_quality_for_date
get_historical_data_in_date_range

{serialize_function_to_json(get_future_data_for_date)}
{serialize_function_to_json(get_future_data_in_date_range)}
{serialize_function_to_json(get_historical_air_quality_for_date)}
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{serialize_function_to_json(get_historical_data_in_date_range)}

You need to choose what function to use and retrieve parameters for this func-
tion from the user input.
IMPORTANT: Today is {datetime.date.today().strftime("%A")}, {date-
time.date.today()}.
IMPORTANT: If the user query contains 'will', it is very likely that you will 
need to use the get_future_data function
NOTE: Ignore the Feature View and Model parameters.
NOTE: Dates should be provided in the format YYYY-MM-DD.

To use these functions respond with:
<multiplefunctions>
    <functioncall> {fn} </functioncall>
    <functioncall> {fn} </functioncall>
    ...
</multiplefunctions>

Edge cases you must handle:
- If there are no functions that match the user request, you will respond 
politely that you cannot help.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

The prompt for the second LLM query can be found in the source code repository. It
is not shown here as it is straightforward - it includes the results of the function call,
the original user query, some domain knowledge about air quality questions, and
today’s date.

Running the Function Calling Notebook
The 5_function_calling.ipynb notebook needs a GPU to run efficiently. It also has its
own set of Python requirements that you need to install:

 pip install -r requirements-llm.txt

If you do not have one on your laptop, you can use Google Colabatory with a T4
GPU at no cost (you will need a Google account, though). You need to uncomment
and run the first two cells in the notebook to install the LLM Python requirements
and download some Python modules. The notebook quantizes the weights in the
Llama-3-8B to 4-bits, reducing its size in memory so that the LLM will run on a T4
GPU (which has 16GB of RAM). Weight quantization does not appear to negatively
affect LLM performance for our system.

There is also a Streamlit program (streamlit_app.py) that wraps the same LLM pro‐
gram in a UI. Streamlit is a framework for building a UI as an imperative program
written in Python. You can host them in a free serverless service such as streamlit.io
or Huggingface Spaces.
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Summary
In this chapter, we built our first ML system together - an air quality forecasting ser‐
vice. We decomposed the problem into 5 Python programs in total - a program to
create and backfill feature groups, an operational feature pipeline that downloads air
quality readings and weather forecasts, a model training pipeline that we run on-
demand, a batch-inference pipeline that outputs an air quality forecast chart as well
as a hindcast as PNG files, and a LLM-powered program with a voice-driven UI for
our service. We also defined a GitHub Action workflow as a YAML file to schedule
the feature pipeline and batch inference pipeline to run daily. That was a good chunk
of work, but now you have a ML system that you, and your community, can be proud
of.
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CHAPTER 4

Feature Stores

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 4th chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

As we have seen in the first three chapters, data management is one of the most chal‐
lenging aspects of building and operating AI systems. In the last chapter, we used a
feature store to build our air quality forecasting system. The feature store stored the
output of the feature pipelines, provided training data for the training pipeline, and
inference data for the batch inference pipeline. The feature store is a central data plat‐
form that stores, manages, and serves features for both training and inference. It also
ensures consistency between features used in training and inference, and enables the
construction of modular AI systems by providing a shared data layer and well-
defined APIs to connect feature, training, and inference pipelines.

In this chapter, we will dive deeper into feature stores and answer the following ques‐
tions:

• What problems does the feature store solve and when do I need one?
• What is a feature group, how does it store data, and how do I write to one?
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• How do I design a data model for feature groups?
• How do I read feature data spread over many feature groups for training or infer‐

ence?

We will look at how feature stores are built from a columnar store, a row-oriented
store, and a vector index. We describe how feature stores solve challenges related to
feature reuse, how to manage time-series data, and how to prevent skew between fea‐
ture, training, and inference pipelines. We will also weave a motivating example of a
real-time AI system that predicts credit card fraud throughout the chapter.

A Feature Store for Fraud Prediction
We start by presenting the problem of how to design a feature store for an AI system
that makes real-time fraud predictions for credit card transactions. The ML System
Card for the system is shown in Table 4-1.

Table 4-1. ML System Card for our Real-Time Credit Card Fraud Prediction Service.

Dynamic Data Sources Prediction Problem UI or API Monitoring
Credit Card Transactions arrive in an Event
Bus. Credit card, issuer, and merchant
details in tables are in a Data Warehouse.

Whether a credit card
transaction is suspected of
fraud or not.

Real-time API that
rejects suspected fraud
transactions.

Offline investigations of
suspected vs actual
reported fraud.

The source data for our AI system comes from a Data Mart (consisting of a data
warehouse and an event bus (such as Apache Kafka or AWS Kinesis), see Figure 4-1.
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Figure 4-1. We design our feature store by first identifying and creating features from the
data sources, organizing the features into tables called feature groups, selecting features
from different feature groups for use in a model by creating a feature view, and creating
training/inference data with the feature view.

Starting from our data sources, we will learn how to build a feature store with four
main steps:

1. identify entities and features for those entities,
2. organize entities into tables of features (feature groups), and identify relation‐

ships between feature groups,
3. select the features for a model, from potentially different feature groups, in a fea‐

ture view
4. retrieve data for model training, batch/online inference with the feature view.

This chapter will provide more details on what feature groups and feature views are,
but before that, we will look at the history of feature stores, what makes up a feature
store (its anatomy), and when you may need a feature store.

Brief History of Feature Stores
As mentioned in Chapter 1, Uber introduced the first feature store for machine learn‐
ing in 2017 as part of its Michelangelo platform. Michelangelo includes a feature
store (called Palette), a model registry, and model serving capabilities. Michelangelo
also introduced a domain-specific language (DSL) to define feature pipelines. In the
DSL, you define what type of feature to compute on what data source (such as count
the number of user clicks in the last 7 days using a clicks table), and Michelangelo
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transpiles your feature definition into a Spark program and runs it on a schedule (for
example, hourly or daily).

In late 2018, Hopsworks was the first open-source feature store, introducing an API-
based feature store, where external pipelines read and write feature data using a Data‐
Frame API and there is no built-in pipeline orchestration. The API-based feature
store enables you to write pipelines in different frameworks/languages (for example,
Flink, PySpark or Pandas). In late 2019, the open-source Feast feature store adopted
the same API-based architecture (DataSets) for reading/writing feature data. Now,
feature stores from GCP, AWS, and Databricks follow the API-based architecture,
while the most popular DSL-based feature store is Tecton. In the rest of this Chapter,
we describe the common functionality offered by both API-based and DSL-based fea‐
ture stores, while in the next chapter, we will look at the Hopsworks Feature Store,
which is representative of API-based feature stores.

The term feature platform has been used to describe feature stores
that support managed feature pipelines (but not managed training
or inference pipelines). The virtual feature store is a moniker for a
feature store that has pluggable offline and online stores. Finally,
the AI Lakehouse describes a feature store that uses Lakehouse
tables as its offline store and has an integrated online store for
building real-time AI systems.

The Anatomy of a Feature Store
The feature store is a factory that produces and stores feature data. It enables the
faster production of higher quality features by managing the storage and transforma‐
tion of data for training and inference, and allows you to reuse features in any model.
In Figure 4-2, we can see the main inputs, outputs, and the data transformations
managed by the feature store.
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Figure 4-2. Feature stores help transform and store feature data. The feature store
organizes the data transformations to create consistent snapshots of training data for
models, as well as the batches of inference data for batch AI systems, and the online
inference data for real-time AI systems.

Feature pipelines feed the feature store with feature data. They take new data or his‐
torical data (backfilling) as input and transform it into reusable feature data, primar‐
ily using model-independent transformations. On-demand transformations can also
be applied to historical data to create reusable feature data. The programs that execute
the model-independent (and on-demand transformations) are called feature pipe‐
lines. Feature pipelines can be batch or streaming programs and they update the fea‐
ture data over time - the feature store stores mutable feature data. For supervised
machine learning, labels can also be stored in the feature store and are treated as fea‐
ture data until they are used to create training or inference data, in which case, the
feature store is aware of which columns are features and which columns are labels.

Feature stores enable the creation of versioned training datasets by taking a point-in-
time consistent snapshot of feature data and then applying model-dependent trans‐
formations to the features (and labels). Training datasets are used to train models,
and the feature store should store the lineage of the training dataset for models. The
feature store also creates point-in-time consistent snapshots of feature data for batch
inference, that should have the same model-dependent transformations applied to
them as were applied when creating the training data for the model used in batch
inference.

The feature store also provides low latency feature data to online applications or serv‐
ices. They issue prediction requests, and parameters from the prediction request can
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be used to compute on-demand features and retrieve precomputed rows of feature
data from the feature store. Any on-demand and precomputed features are merged
into a feature vector that can have further model-dependent transformations applied
to it (the same as those applied in training) before the model makes a prediction with
the transformed feature vector.

Feature stores support and organize the data transformations in the taxonomy from
Chapter 2. Model-independent transformations (MITs) are applied only in feature
pipelines on new or historical data to produce reusable feature data. On-demand
transformations (ODTs) are applied in both feature pipelines and online inference
pipelines, and feature stores should ensure that exactly the same ODT is executed in
the feature and online inference pipelines, otherwise there is a risk of skew. Model-
dependent transformations (MDTs) are applied in training pipelines, batch inference
pipelines, and online inference pipelines. Again, the feature store should ensure that
the same MDT is executed in the training and inference pipelines, preventing skew.
In Figure 4-3, you can see examples of directed acyclic graphs (DAGs) of valid and
invalid combinations of MITs, ODTs, and MDTs.

Figure 4-3. Data transformations can be composed when creating features, subject to a
couple of constraints: MITs cannot come after ODTs in the DAG, and if there is a MDT,
it has to be the last transformation in the DAG and there can be only a single MDT.

Feature stores can support the composition of model-independent transformations
(MITs), model-dependent transformations (MDTs), and on-demand transformations
(ODTs) in pipelines, subject to the following constraints:
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• MDTs are always the last transformation in a DAG (just before the model is
called),

• MDTs are not normally composed (for example, you don’t encode a categorical
feature twice or normalize and then standardize a numerical feature),

• You can build a DAG of MITs and ODTs, but ODTs should not come before
MITs in the DAG - in an online inference pipeline, there is no way to execute a
MIT after the ODT. If you could run the MIT after the ODT, then, by definition,
the MIT would then be an ODT.

This chapter, however, is concerned primarily with the storage, modeling, and query‐
ing of the feature data. Chapters 6, 7, and 8 will address the MITs, MDTs, and ODTs.

When Do You Need a Feature Store?
When is it appropriate for you to use a feature store? Many organizations already
have operational databases, an object store, and a data warehouse or lakehouse. Why
would they need a new data platform? The following are scenarios where a feature
store can help.

For Context and History in Real-Time AI Systems
We saw in chapter 1 how real-time AI systems need history and context to make per‐
sonalized predictions. In general, when you have a real-time prediction problem but
the prediction request has low information content, you can benefit from a feature
store to provide context and history to enrich the prediction request. For example, a
credit card payment has limited information in the prediction request - only the
credit card number, the merchant ID (unique identifier), the timestamp and location
for the payment, the category of goods purchased, and the amount of money. Build‐
ing an accurate credit card fraud prediction service with AI using only that input data
is almost impossible, as we are missing historical information about credit card pay‐
ments. With a feature store, you can enrich the prediction request at runtime with
history and context information about the credit card’s recent usage, the customer
details, the issuing bank’s details, and the merchant’s details, enabling a powerful
model for predicting fraud.

For Time-Series Data
Many retail, telecommunications, and financial AI systems are built on time-series
data. The air quality and weather data from Chapter 3 is time-series data that we
update once per day and store in tables along with the timestamps for each observa‐
tion or forecast. Time-series data is a sequence of data points for successive points in
time. A major challenge in using time-series data for machine learning is how to read
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(query) feature data that spread over many tables - you want to read point-in-time
correct training data from the different tables without introducing future data leakage
or including any stale feature values, see Figure 4-4.

Figure 4-4. Creating point-in-time correct training data from time-series data spread
over different relational tables is hard. The solution starts from the table containing the
labels/targets (Fraud Label), pulling in columns (features) from the tables containing the
features (Transactions and Bank). If you include feature values from the future, you
have future data leakage. If you include a feature value that is stale, you also have data
leakage.

Feature stores provide support for reading point-in-time correct training data from
different tables containing time-series feature data. The solution, described later in
this chapter, is to query data with temporal joins. Writing correct temporal joins is
hard, but feature stores make it easier by providing APIs for reading consistent snap‐
shots of feature data using temporal joins.

You have probably encountered data leakage in the context of
training models - if you leak data from your test set or any external
dataset into your training dataset, your model may perform better
during testing than when it is used in production on unseen data.
Future data leakage is when you build training datasets from time-
series data and incorrectly introduce one or more feature data
points from the future.
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For Improved Collaboration with the FTI Pipeline Architecture
An important reason many models do not reach production is that organizations
have silos around the teams that collaborate to develop and operate AI systems. In
Figure 4-5, you can see a siloed organization where the data engineering team has a
metaphorical wall between them and the data science team, and there is a similar wall
between the data science team and the ML engineering team. In this siloed organiza‐
tion, collaboration involves data and models being thrown over the wall from one
team to another.

Figure 4-5. If you are a Data Scientist in an organization with the above method of col‐
laboration (where you receive dumps of data and you throw models over the wall to pro‐
duction), Conway’s Law implies you will only ever train models and not contribute to
production systems.

The system for collaboration at this organization is an example of Conway’s Law,
where the process for collaboration (throwing assets over walls) mirrors the siloed
communication structure between teams. The feature store solves the organizational
challenges of collaboration across teams by providing a shared platform for collabo‐
ration when building and operating AI systems. The feature, training, and inference
(FTI) pipelines from Chapter 2 also help with collaboration. They decompose an AI
system into modular pipelines that use the feature store acting as the shared data
layer connecting the pipelines. The responsibilities for the FTI pipelines map cleanly
onto the teams that develop and operate production AI systems:

• data engineers and data scientists collaborate to build and operate feature pipe‐
lines;

• data scientists train and evaluate the models;
• ML engineers write inference pipelines and integrate models with external sys‐

tems.
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For Governance of AI Systems
Feature stores help ensure that an organization’s governance processes keep feature
data secure and accountable throughout its lifecycle. That means auditing actions
taken in your feature store for accountability and tracking lineage from source data to
features to models. Feature stores manage mutable data that needs to comply with
regulatory requirements, such as the European Union’s AI Act that categorizes AI sys‐
tems into four different risk levels: unacceptable, high, limited, and minimal risk.

Beyond data storage, the feature store also needs support for lineage for compliance
with other legal and regulatory requirements involving tracking the origin, history,
and use of data sources, features, training data, and models in AI systems. Lineage
enables the reproducibility of features, training data, and models, improved debug‐
ging through quicker root cause analysis, and usage analysis for features. Lineage tells
us where AI assets are used. Lineage does not, however, tell you whether a particular
feature is allowed to be used in a particular model - for example, a high risk AI sys‐
tem. Access control, while necessary, also does not help here either as it only informs
you whether you have the right to read/write the data, not whether your model will
be compliant if you use a certain feature. For compliance, feature stores support cus‐
tom metadata to describe the scope and context under which a feature can be used.
For example, you might tag features that have personally identifiable information
(PII). With lineage (from data sources to features to training data to models) and PII
metadata tags for features, you can easily identify which models use features contain‐
ing PII data.

For Discovery and Reuse of AI Assets
Feature reuse is a much advertised benefit of feature stores. Meta reported that “most
features are used by many models” in their feature store, and the most popular 100
features are reused in over 100 different models each. The benefits of feature reuse
include: higher quality features through increased usage and scrutiny, reduced stor‐
age cost, and reduced feature development and operational costs, as models that
reuse features do not need new feature pipelines. Computed features are stored in the
feature store and published to a feature registry, enabling users to easily discover and
understand features. The feature registry is a component in a feature store that has an
API and user interface (UI) to browse and search for available features, feature defini‐
tions, statistics on feature data, and metadata describing features.

For Elimination of Offline-Online Feature Skew
Feature skew is when significant differences exist between the data transformation
code in either an ODT or MDT in an offline pipeline (a feature or training pipeline,
respectively), and the data transformation code for the ODT or MDT in the corre‐
sponding inference pipeline. Feature skew can result in silently degraded model per‐
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formance that is difficult to discover. It may show up as the model not generalizing
well to the new data during inference due to the discrepancies in the data transforma‐
tions. Without a feature store, it is easy to write different implementations for an
ODT or MDT - one implementation for the feature or training pipeline and a differ‐
ent one for the inference pipeline. In software engineering, we say that such data
transformation code is not DRY (Do not Repeat Yourself). Feature stores support the
definition and management of ODTs and MDTs, and ensure the same function is
applied in the offline and inference pipelines.

For Centralizing your Data for AI in a single Platform
Feature stores aspire to be a central platform that manages all data needed to train
and operate AI systems. Existing feature stores have a dual-database architecture,
including an offline store and an online store. However, feature stores are increasingly
adding support for vector database capabilities - vector indexes to store vector
embeddings and support similarity search.

The online store is used by online applications to retrieve feature vectors for entities.
It is a row-oriented data store, where data is stored in relational tables or in a NoSQL
data structure (like key-value pairs or JSON objects). The key properties of row-
oriented data stores are:

• low latency and high throughput CRUD (create, read, update, delete) operations
using either SQL or NoSQL,

• support for primary keys to retrieve features for specific entities,
• support for time-to-live (TTL) for tables and/or rows to expire stale feature data,
• high availability through replication and data integrity through ACID transac‐

tions.

The offline store is a columnar store. Column-oriented data stores are:

• central data platforms that store historical data for analytics,
• low cost storage for large volumes of data (including columnar compression of

data) at the cost of high latency for row-based retrieval of data,
• faster complex queries than row-oriented stores through more efficient data

pruning and data movement, aided by data models designed to support complex
queries.

The offline stores for existing feature stores are lakehouses. The lakehouse is a combi‐
nation of a data lake for storage and a data warehouse for querying the data. In con‐
trast to a data warehouse, the lakehouse is an open platform that separates the storage
of columnar data from the query engines that use it. Lakehouse tables can be queried
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by many different query engines. The main open-source standards for the lakehouse
are the table formats for data storage (Apache Iceberg, Delta Lake, Apache Hudi). A
table format consists of data files (Parquet files) and metadata that enables ACID
(atomic, consistent, isolation, durable) updates to the Parquet files - a commit for
every batch append/update/delete operation. The commit history is stored as meta‐
data and enables time-travel support for lakehouse tables, where you can query his‐
torical versions of tables (using a commit ID or timestamp). Lakehouse tables also
support schema evolution (you can add columns to your table without breaking cli‐
ents), as well as partitioning, indexing, and data skipping for faster queries.

The offline and/or online store may also support storing vector embeddings in a vec‐
tor index that supports approximate nearest neighbor (ANN) search for feature data.
Feature stores either include a separate standalone vector database (such as Weaviate,
Pinecone), or an existing row-oriented database that supports a vector index and
ANN search (such as Postgres PgVector, OpenSearch, and MongoDB). Now that we
have covered why and when you may need a feature store, we will look into storing
data in feature stores in feature groups.

Feature Groups
Feature stores use feature groups to hide the complexity of writing and reading data
to/from the different offline and online data stores. We encountered feature groups in
Chapters 2 and 3, but we haven’t formally defined them. Feature groups are tables,
where the features are columns and the feature data is stored in offline and online
stores. Not all feature stores use the term feature groups - some vendors call them
feature sets or feature tables, but they refer to the same concept. We prefer the term
feature group as the data is potentially stored in a group of tables - more than one
store. We will cover the most salient and fundamental properties of feature groups
employed by existing feature stores, but note that your feature store might have some
differences, so consult its documentation before building your feature pipelines.

A feature group consists of a schema, metadata, a table in an offline store, an optional
table in an online store, and an optional vector index. The metadata typically contains
the feature group’s:

• name
• version (a number)
• entity_id (a primary key, defined over one or more columns)
• onlined_enabled - whether the feature group’s online table is used or not
• event_time column (optional)
• tags to help with discovery and governance.

118 | Chapter 4: Feature Stores



The entity_id is needed to retrieve rows of online feature data and prevent duplicate
data, while the version number enables support for A/B tests of features by different
models and enables schema breaking changes to feature groups. The event_time col‐
umn is used by the feature store to create point-in-time consistent training data from
time-series feature data. Depending on your feature store, a feature group may sup‐
port some or all of the following:

• foreign_key columns (references to a primary key in another feature group)
• a partition_key column (used for faster queries through partition pruning)
• vector embedding features that are indexed for similarity search
• feature definitions that define the data transformations used to create the features

stored in the feature group.

In Figure 4-6, we can see a feature group containing different columns related to
credit-card payments. You will notice that most columns are not feature columns.

Figure 4-6. Rows are uniquely identified with a combination of the entity ID and the
event_time. You can have a foreign key that points to a row in a different feature group,
and a partition key, used for push-down filters for faster queries. The index columns are
not features. Any feature could be used as a label when creating training data from the
feature group.

The first four columns are collectively known as index columns - the cc_num (entity
id), trans_ts is the event_time, account_id is a foreign key to an account_details
feature group (not shown), and day is a partition_key column enabling queries that
filter by day to be faster by only reading the needed data (for example, read yester‐
day’s feature data will not read all rows, only the rows where day value is yesterday).
The next 3 columns (amount, category, and embedding_col) are features - the embed‐
ding_col is a vector embedding that is indexed for similarity search in the vector
index. Finally, the is_fraud column is also a feature column but is identified as a ‘label’
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in the figure. That is because features can also be labels - the is_fraud column could
be a label in one model, but a feature in another model. For this reason, labels are not
defined in feature groups, but only defined when you select the features and labels for
your model.

You can perform inserts, updates, and deletes on feature groups, either via a batch
(DataFrame) API or a streaming API (for real-time AI systems). As a feature group
has a schema, your feature store defines the set of supported data types for features -
strings, integers, arrays, and so on. In most features, you can either explicitly define
the schema for a feature group or the feature store will infer its schema using the first
DataFrame written to it. If a feature group contains time-series data, the event_time
column value should reflect the time the feature values in that row were created (not
when the row of data was ingested). If the feature group contains non time-series
data, you can omit the event_time column.

The entity ID is a unique identifier for an entity that has features in
the modeled world. The entity ID can be either a natural key or a
surrogate key. An example of a natural key is an email address or
social security number for a user, while an example of a surrogate
key is a sequential number, such as an auto increment number, rep‐
resenting a user.

Feature Groups store untransformed feature data
Feature pipelines write untransformed feature data to feature groups. The MDTs,
such as encoding a categorical feature, are performed in training and inference pipe‐
lines after reading feature data from the feature store. In general, feature groups
should not store transformed feature values (that is, MDTs should not have been
applied) as:

• The feature data is not reusable across models (model-specific transformations
transform the data for use by a single model or set of related models).

• It can introduce write amplification. If the MDT is parameterized by training
data, such as standardizing a numerical feature, the time taken to perform a write
becomes proportional to the number of rows in the feature group, not the num‐
ber of rows being written. For standardization, this is because updates first
require reading all existing rows, recomputing the mean and standard deviation,
then updating the values of all rows with the new mean and standard deviation.

• Exploratory data analysis works best with unencoded feature data - it is hard for
a data scientist to understand descriptive statistics for a numerical feature that
has been scaled.
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Feature Definitions and Feature Groups
A feature definition is the source code that defines the data transformations used to
create one or more features in a feature group. In API-based feature stores, this is the
source code for your MITs (and ODTs) in your feature pipelines. For example, this
could be a Pandas, Polars, or Spark program for a batch feature pipeline. In DSL-
based feature stores, a feature definition is not just the declarative transformations
that create the features, but also the specification for the feature pipeline (batch,
streaming, or on-demand).

Writing to Feature Groups
Feature stores provide an API to ingest feature data. The feature store manages the
complexity of then updating the feature data in the offline store, online store, and
vector index on your behalf - the updates in the background are transparent to you as
a developer. Figure 4-7 shows two different types of APIs for ingesting feature data. In
Figure 4-7(a), you have a single batch API for clients to write feature data to the off‐
line store. The offline store is normally a lakehouse table and they provide change
data capture (CDC) APIs where you can read the data changes for the latest commit.
A background process either runs periodically or continually and reads any new
commits since the last time it ran and copies them to the online store and/or vector
index. For feature groups storing time-series data, the online store only stores the lat‐
est feature data for each entity (the row with the most recent event_time key value for
each primary key).

Figure 4-7. Two different feature store architectures. In (a) clients write to the offline fea‐
ture store and updates are periodically synchronized to the online store and vector index.
In (b) clients can also write via a stream API to an event bus, after which writes are
streamed to the online store and vector index, then periodically synchronized to the off‐
line store.
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In Figure 4-7(b), there are two APIs - a batch API and a stream API. Clients can use
the batch API to write to only the offline store. If a feature group is online_enabled,
clients write to the steam API. Clients that write to the stream API can be either batch
programs (Spark, Pandas, Polars) or stream processing programs (Flink, Spark
Streaming). The difference with the stream API is that updates are written first to the
online store and vector index (here via an event bus), and then synchronized periodi‐
cally with the offline store. Feature data is available at lower latency in the online store
via the stream API - that is, the stream API enables fresher features. For feature
groups storing time-series data, the online store can again store either the latest fea‐
ture data for each entity (the row with the most recent event_time key value for each
primary key). Some online feature stores with a stream API also support computing
aggregations as ODTs (for example, max amount for a credit card transaction in the
last 15 minutes), and, in this case, a TTL can be specified for each row or table so that
feature data is removed when its TTL has expired.

Feature Freshness
The freshness of feature data in feature groups is defined as the total time taken from
when an event is first read by a feature pipeline to when the computed feature
becomes available for use in an inference pipeline, see Figure 4-8. It includes the time
taken for feature data to land in the online feature store and the time taken to read
from the online store.

Figure 4-8. Feature freshness is the time taken from when data is ingested to a feature
pipeline to when the feature(s) computed is available for reading by clients.

Fresh features for real-time AI systems typically require streaming feature pipelines
that update the feature store via a stream API. In Chapter 1, we described how TikTok
is a real-time AI system - when you swipe or click, features are created using informa‐
tion about your viewing activity using streaming feature pipelines, and within a cou‐
ple of seconds they are available as precomputed features in feature groups for
predictions. If it took minutes, instead of seconds, TikTok’s recommender would not

122 | Chapter 4: Feature Stores



feel as if it tracks your intent in real-time - it’s AI would be too laggy to be useful as a
recommender.

Data Validation
Some feature stores support data validation when writing feature data to feature
groups. For each feature group, you specify constraints for valid feature data values.
For example, if the feature is an adult user’s age, you might specify that the age should
be greater than 17 and less than 125. Data validation helps avoid problems with data
quality in feature groups. Note that there are some exceptions to the general
“garbage-in, garbage-out” principle. For example, it is often ok to have missing fea‐
ture values in a feature group, as you can impute those missing values later in your
training and inference pipelines.

Now that we’ve covered what a feature group is, what it stores, and how you write to
one, let’s now look at how to design a data model for feature groups.

Data Models for Feature Groups
If the feature store is to be the source of our data for AI, we need to understand how
to model the data stored in its feature groups. Data modeling for feature stores is the
process of deciding:

• what features to create for which entities and what features to include in feature
groups,

• what relationships between the feature groups look like,
• what the freshness requirements for feature data is,
• and what type of queries will be performed on the feature groups.

Data modeling includes the design of a data model. A data model is a term from data‐
base theory, that refers to how we decompose our data into different feature groups
(tables), with the goals of:

• ensuring the integrity of the data,
• improving the performance of writing the data,
• improving the performance of reading (querying) the data,
• improving the scalability of the system as data volumes and/or throughput

increases

You may have heard of Entity-Relationship diagrams (see Figure 4-8, for example)
from relational databases. It is a way of identifying entities (such as credit card trans‐
actions, user accounts, bank details, and merchant details) and the relationships
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between those entities. For example, a credit card transaction could have a reference
(foreign key) to the credit card owner’s account, the bank that issued the card, and the
merchant that performed the transaction. In the relational data model, entities typi‐
cally map to tables and relationships to foreign keys. Similarly, in feature stores an
entity maps to a feature group and relationships map to foreign keys in a feature
group.

What is the process to go from requirements and data sources to a data model for
feature groups, such as an Entity Relationship Diagram? There are 2 basic techniques
we can use:

Normalization
Reduce data redundancy and improve data integrity,

Denormalization
Improve query performance by increasing data redundancy.

These two techniques produce data models that can be categorized into one of two
types: denormalized data models that include redundant (duplicated) data and nor‐
malized data models that eliminate redundant data. The benefits and drawbacks of
both approaches are shown in Table 4-2.

Table 4-2. Comparison of denormalized data models versus normalized data models.

Denormalized Data Model Normalized Data Model
Data Storage
Costs

Higher due to redundant data in the (row-oriented) online
store

Lower due to no redundant data

Query Complexity Lower, due to less need for JOINs when reading from the
online store

Higher, due to more JOINs needed when
querying data

In general, denormalized data models are more prevalent in columnar data stores
(lakehouses and data warehouses) as they can often efficiently compress redundant
data in columns with columnar compression techniques like run-length encoding,
while row-oriented data stores cannot compress redundant data, and, therefore, favor
normalized data models.

Before we start identifying entities, features, and feature groups for entities/features,
we should consider the types of AI systems that will use the feature data:

1. batch AI systems
2. real-time AI systems

For (1), feature groups only need to store data in their offline store. As such, we could
consider existing data models for columnar stores, such as the star schema, snowflake
schema that are widely used in analytical and business intelligence environments. For
(2), we have feature groups with tables in both the offline and online store. For this,
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we should use a general purpose data model that works equally well for both batch
and real-time queries. We will see in the next section that the snowflake schema (a
normalized data model) is our preferred methodology for data modeling in feature
stores, although some feature stores only support the star schema, so we will intro‐
duce both data models. The star schema and snowflake schema are data models that
organize data into a fact table that connects to dimension tables. In the star schema,
columns in the dimension tables can be redundant (duplicated), but the snowflake
schema extends the star schema to enable dimension tables to be connected to other
dimension tables, enabling a normalized data model with no redundant data. We will
now look at how to design a star schema or snowflake schema data model with fact
and dimension tables using dimension modeling.

Other popular data models used in columnar stores include the
data vault model (used to efficiently handle data ingestion, where
data can arrive late and schema changes happen frequently), and
the one big table (OBT) data model (which simplifies data modeling
by storing as much data as possible in a single wide table). OBT is
not suitable for AI systems, as it would store all the labels and fea‐
tures in a single denormalized table which would explode storage
requirements in the (row-oriented) online store, and it is not suited
for storing feature values that change over time. You can learn
more on data modeling in the book ”Fundamentals of Data Engi‐
neering”.

Dimension modeling with a Credit Card Data Mart
The most popular data modeling technique in data warehousing is dimension model‐
ing that categorizes data as facts and dimensions. Facts are usually measured quanti‐
ties, but can also be qualitative. Dimensions are attributes of facts. Some dimensions
change value over time and are called slowly changing dimensions (SCD). Let’s look at
an example of facts and dimensions in a credit card transactions data mart. A data
mart is a subset of a data warehouse (or lakehouse) that contains data focused on a
specific business line, team, or product.

In our example, the credit card transactions are the facts and the dimensions are data
about the credit card transactions, such as the card holder, their account details, the
bank details, and the merchant details. We will use this data mart to power a real-time
AI system for predicting credit card fraud. But first, let’s look at our data mart, illus‐
trated in an Entity-Relationship Diagram in Figure 4-9 using a snowflake schema
data model.
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Figure 4-9. The credit card transaction facts and the dimension tables, organized in a
snowflake schema data model. The lines between the tables represent the foreign keys
that link the tables to one another. For example, card_details includes a reference to the
account that owns the card (account_details) and the bank that issued the card
(bank_details).

The fact table stores:

credit_card_transactions
A unique ID for the transaction (t_id), the credit card number (cc_num), a time‐
stamp for the transaction (event_time), the amount of money spent (amount), the
location (longitude and latitude), and the category of the item purchased.

The dimension tables for the credit card transactions are:

card_details
Its expiry date, issue date, the date if the card has been invalidated, and foreign
keys to account and bank details tables (the foreign keys make this a snowflake
schema data model).

account_details
Name, address, debt at the end of the previous month, date when the account was
created and closed (end_date), and date when a row was last_modified.

bank_details
Credit rating, country, the date when a row was last_modified.
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merchant_details
Count of chargebacks for the merchant in the previous week (cnt_chrge‐
back_pre_week), its country, and date when a row was last_modified.

The credit card transactions table is populated using the event sourcing pattern,
whereby once per hour, an ETL Spark job reads all the credit card transactions that
arrived in Kafka during the previous hour, and persists the events as rows in the
credit_card_transactions table. The dimension tables are updated by ETL or ELT pipe‐
lines that read changes to dimensions for operational databases (not shown). We will
now see how we can use the credit card transaction events in Kafka and the dimen‐
sion tables to build our real-time fraud detection AI system.

Labels are Facts and Features are Dimensions
In a feature store, the facts are the labels (or targets/observations) for our models,
while the features are dimensions for the labels. Like facts, the labels are immutable
events that often have a timestamp associated with them. For example, in our credit
card fraud model, we will have a label is_fraud for a given credit card transaction and
a timestamp for when the credit card transaction took place. The features for that
model will be the card usage statistics, details about the card itself (expiry date), the
cardholder, the bank, and the merchant. These features are dimensions for the labels,
and they are often mutable data. Sometimes they are SCDs, but in real-time machine
learning systems, they might be fast changing dimensions. Irrespective of whether the
feature values change slowly or quickly, if we want to use a feature as training data for
a model, it is crucial to save all values for features at all points in time. If you don’t
know when and how a feature changes its value over time, then training data created
using that feature could have future data leakage or include stale feature values.

Dimension modeling in data warehousing introduced SCD types to store changing
values of dimensions (features). There are at least 5 well-known ways to implement
SCDs (SCD Types), each optimized for different ways a dimension could change.
Implementing different SCD Types in a data mart is a skilled and challenging job.
However, we can massively simplify managing SCDs for feature stores for two rea‐
sons. Firstly, as feature values are observations of measurable quantities, each new
feature value replaces the old feature value (a feature cannot have multiple alternative
values at the same time). Secondly, there are a limited number of query patterns for
reading feature data - you read training data and batch inference data from the offline
store and rows of feature vectors from the online store. That is, feature stores do not
need to support all 5 SCD Types, instead they need a very specific set of SCD Types
(0, 2, and 4), and support for those types can be unobtrusively added to feature
groups by simply specifying the event_time column in your feature group. This way,
feature stores simplify support for SCDs compared to general purpose data ware‐
houses.
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Table 4-3 shows how feature stores implement SCD Types 0, 2, and 4 with the rela‐
tively straightforward approach of specifying the feature group column that stores the
event_time.

Table 4-3. Feature stores implement variants of SCD Types 0, 2, and 4.

SCD
Type

Usage Description Feature Store

Type 0 Immutable feature data No history is kept for feature data, suitable for features that are
immutable.

Feature Group,
no event_time

Type 2 Mutable feature data
used by batch AI
systems

When a feature value is updated for an entity ID, a new row is
created with a new event_time (but the same entity ID). Each
new row is a new version of the feature data.

Offline Feature
Group with
event_time

Type 4 Online features for real-
time AI Systems. Offline
data for training.

Features are stored as records in two different tables - a table in
the online store with the latest feature values and a table in the
offline store with historical feature values.

Online/Offline
Feature Group
with event_time

Type 0 SCD is a feature group that stores immutable feature data. If you do not define
the event_time column for your feature group, you have a feature group with Type 0
SCD. Type 2 SCD is an offline-only feature group (for batch AI systems), where we
have the historical records for the time-series data. In classical Type 2 SCD, it is
assumed that rows need both an end_date and an effective_date (as multiple dimen‐
sion values may be valid at any point-in-time). However, in the feature store, we don’t
need an end_date, only the effective_date, called the event_time, as only a single fea‐
ture value is valid at any given point-in-time. Type 4 SCD is implemented as a feature
group, backed by tables in both the online and offline stores. A table in the online
store stores the latest feature data values, and a table with the same name and schema
in the offline store stores all of the historical feature data values. In traditional Type 4
SCD, the historical table does not store the latest values, but in feature stores, the off‐
line store stores both the latest feature values and the historical values.

Feature stores hide the complexity of designing a data model that implements these 3
different SCD Types by implementing the data models in their read/write APIs. For
example, in the AWS Sagemaker feature store (an API-based feature store), you only
need to specify the event time column when defining a feature group:

feature_group.create(
    description = "Some info about the feature group",
    feature_group_name = feature_group_name,
    event_time_feature_name = event_time_feature_name,
    enable_online_store = True,
    ...
    tags = ["tag1","tag2"]
)
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Writes to this feature group will create Type 4 SCD features, with the latest feature
data in a key-value store, ElastiCache or DynamoDB, and historical feature data in a
columnar store (Apache Iceberg).

Real-Time Credit Card Fraud Detection AI System
Let’s now start designing our real-time AI system to predict if a credit card transac‐
tion is fraudulent. This operational AI system (online inference pipeline) has a ser‐
vice level objective (SLO) of 50ms latency or lower to make the decision on suspicion
of fraud or not. It receives a prediction request with the credit card transaction
details, retrieves precomputed features from the feature store, computes any on-
demand features, merges the precomputed and on-demand features in a single fea‐
ture vector, applies any model-dependent transformations, makes the prediction, logs
the prediction and the untransformed features, and returns the prediction (fraud or
not-fraud) to the client.

To build this system and meet our SLO, we will need to write a streaming feature
pipeline to create features directly from the events from Kafka, as shown in
Figure 4-8. Stream processing enables us to compute aggregations on recent historical
activity on credit cards, such as how often a card has been used in the last 5 minutes,
15 minutes, or hour. These features are called windowed aggregations, as they com‐
pute an aggregation over events that happen in a window of time. It would not be
possible to compute these features within our SLO if we only use the
credit_card_transaction table in our data mart, as it is only updated hourly. We can,
however, compute other features from the data mart, such as the credit rating of the
bank that issued the credit card, and the number of chargebacks for the merchant
that processed the credit card transaction.

We will also create on-demand features from the input request data. A feature with
good predictive power for geographic fraud attacks is the distance and time between
consecutive credit card transactions. If the distance is large and the time is short, that
is often indicative of fraud. For this, we compute haversine_distance and
time_since_last_transaction features. These on-demand features are computed at run-
time with an on-demand transformation function that takes one or more parameters
passed as part of the prediction request. On-demand features can additionally take
precomputed features from feature groups as parameters.

We have described here an AI system that contains a mix of features computed using
stream processing, batch processing, and on-demand transformations. However,
when we want to train models with these features, the training data will be stored in
feature groups in the feature store. So, we need to identify the features and then
design a data model for the feature groups.
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Data Model for our Real-Time Fraud Detection AI System
We are using a supervised ML model for predicting fraud, so we will need to have
some labeled observations of fraud. For this, there is a new cc_fraud table, not in the
data mart, with a t_id column (the unique identity for credit card transactions) that
contains the credit card transactions identified as fraudulent, along with columns for
the person who reported the fraud and an explanation for why the transaction is
marked as fraudulent. The fraud team updates the cc_fraud table weekly in a Post‐
gres database they manage. Using the data mart and the event bus, we can create fea‐
tures that have predictive power for fraud and the labels, as shown in Table 4-4.

Table 4-4. Features we can create from our data mart and event bus for credit card fraud.

Data Sources Simple Features Engineered Features
credit_card_transactions amount

category
{num}/{sum}_trans_last_10_mins
{num}/{sum}_trans_last_hour
{num}/{sum}_trans_last_day
{num}/{sum}_trans_last_week
prev_ts_transaction
prev_loc_transaction
haversine_distance time_since_last_transaction

credit_card_transactions
cc_fraud

is_fraud

credit_card_transactions
card_details table

days_until_expired
max_debt_last_12_months

account_details table debt_end_prev_month max_debt_last_12_months

mechant_details table cnt_chrgeback_prev_week cnt_chrgeback_prev_month

bank_details table credit_rating days_since_bank_cr_changed

There are many frameworks and programming languages that we could use to create
these features, and we will look at source code for them in the next few chapters. For
now, we are interested in the data model for our feature groups that we will design to
store and query these features, as well as the fraud labels. The feature groups will need
to be stored in both online and offline stores, as we will, respectively, use these fea‐
tures in our real-time AI system for inference and in our offline training pipeline. We
will now design two different data models, first using the star schema and then using
the snowflake schema.

Star Schema Data Model
The star schema data model is supported by all major feature stores. In Figure 4-10,
we can see that the feature group containing the fraud labels is called a label feature
group.
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Figure 4-10. Star schema data model for our credit card fraud prediction AI system.
Labels (and on-demand features) are the facts, while feature groups are the dimension
tables.

The feature group that contains the labels for our credit card transaction (fraud or
not-fraud) is known as the label feature group. In practice, a label feature group is just
a normal feature group. As we will see later, it is only when we select the features and
labels for our model that we need to identify the columns in feature groups as either a
feature or a label.

Some feature stores do not support storing labels in feature groups.
Instead, for these feature stores, clients provide the labels, label
timestamps (event_time), and entity IDs for feature groups (con‐
taining features they want to include) when creating training data
and inference data. In the Feast feature store, clients provide the
labels, label timestamps, and entity IDs in a DataFrame called the
Spine DataFrame. The Spine DataFrame contains the same data as
our label feature group, but it is not persisted to the feature store.
The Spine DataFrame approach can be more flexible for prototyp‐
ing, as it can also contain additional columns (features) for creating
training data. Instead of having to first create your features and
write them to a feature group, you can include them as columns in
your Spine DataFrame. However, be warned as additional columns
can result in skew - it is your responsibility to ensure that any addi‐
tional columns provided when creating training data are also
included (in the same order, with the same data types) when read‐
ing inference data.
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In Figure 4-10, you can see that the label feature group contains foreign keys to the 4
feature groups that contain features computed from the data mart tables and the
event bus. These feature groups are all updated independently in separate feature
pipelines that run on their own schedule. For example, the aggregated_transactions
feature group is computed by a streaming feature pipeline, while the account_details,
bank_details, and merchant_details feature groups are computed by batch jobs that
run daily.

Snowflake Schema Data Model
The snowflake schema is a data model that, like the star schema, consists of tables
containing labels and features. In contrast to the star schema, however, the feature
data is normalized, making it suitable as a data model for both online and offline
tables. Each feature is split until it is normalized, see Figure 4-11. That is, there is no
redundancy in the feature tables, no repetition of values (except for foreign keys that
point to primary keys).

Figure 4-11. Snowflake schema data model for our feature store for credit card fraud
prediction.

In the snowflake schema, you can see that the label feature group now only has 2 for‐
eign keys, compared to 4 foreign keys in the star schema data model. As we will see in
the next section, the advantage of the snowflake schema here over the star schema is
clearest when building a real-time AI system. In a real-time AI system, the foreign
keys in the label feature groups need to be provided as part of prediction requests by
clients. With a snowflake schema, clients only need to provide the cc_num and mer‐
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chant_id as request parameters in order to retrieve all of the features - features from
the nested tables are retrieved with a subquery. In the star schema, however, our real-
time AI system needs to additionally provide the bank_id and account_id as request
parameters. This makes the real-time AI system more complex, as the client has to
also provide the values for bank_id and account_id.

Feature Store Data Model for Inference
Labels are obviously not available during inference - our model predicts them. Simi‐
larly, none of the values of the features in our label feature group (credit_card_trans‐
actions) are available as precomputed features at online inference time (either for the
star schema or snowflake data model). They are all either passed as feature values in
the prediction request (the foreign keys to the feature groups and the amount and
category features) or computed as on-demand feature values using request parameters
(time_since_last_trans, haversine_distance, days_to_card_expiry). For this reason, the
label feature group is offline only. Its rows can be computed using historical data to
create offline training data, but for online inference all of its columns are either
passed as parameters, computed, or predicted (the label(s)).

Online Inference
For online inference, a prediction request includes as parameters the foreign keys,
any passed features from the label feature group, and any parameters needed to com‐
pute on-demand features, see Figure 4-12. The online inference pipeline uses the for‐
eign keys to retrieve all the precomputed features from online feature groups. Feature
stores provide either language level APIs (such as Python) or a REST API to retrieve
the precomputed features.
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Figure 4-12. During online inference, the rows in the label feature group are not avail‐
able as precomputed values. Instead, the parameters in a prediction request provide the
foreign keys to the feature groups (cc_num and merchant_id), some features are pro‐
vided as parameters (amount, category), and some features are computed as on-demand
features (haversine_distance, time_since_last_trans, days_to_card_expiry).

Batch Inference
Batch inference has similar data modeling challenges to online inference. In Chapter
11, we will re-imagine our credit card fraud prediction problem as a daily batch job
that, for all of yesterday’s credit card transactions, predicts whether they were fraudu‐
lent or not. In this case, the labels are not available, of course, but all features in the
label feature group can be populated by a feature pipeline ahead of time. This
includes computing the on-demand features using historical data. In this case, the
on-demand and passed features are updated at a different cadence from the labels,
and, as such, it is often beneficial to move labels into their own feature group, sepa‐
rate from the on-demand features.

Feature stores often support batch inference data APIs, such as:

1. read all feature data that have arrived in the last 24 hours and return them as a
DataFrame, or

2. read all the latest feature data for a batch of entities (such as all users or all users
who live in Sweden).

An alternative API is to allow batch inference clients to provide a Spine DataFrame
containing the foreign keys (and timestamps) for features. The feature store takes the
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Spine DataFrame and adds columns containing the feature values from the feature
groups (using the foreign keys and timestamps to retrieve the correct feature values).
The Spine DataFrame approach does not work well for case (1), but works well for
case (2) above. You have to do the work of adding all foreign keys to the Spine Data‐
Frame, which is easy if we want to read the latest feature values for all users, and we
pass a Spine DataFrame containing all user IDs. However, reading all feature data
since yesterday requires a more complex query over feature groups, and, here, dedi‐
cated batch inference APIs to support such queries are helpful.

Reading Feature Data with a Feature View
After you have designed a data model for your feature store, you need to be able to
query it to read training and inference data. Feature stores do not provide full SQL
query support for reading feature data. Instead, they provide language level APIs
(Python, Java, etc) and/or a REST API for retrieving training data, batch inference
data, and online inference data. But, reading precomputed feature data is not the only
task for a feature store. The feature store should also apply any model-dependent
transformations and on-demand transformations before returning feature data to cli‐
ents.

Feature stores provide an abstraction that hides the complexity of retrieving/comput‐
ing features for training and inference for a specific model (or group of related mod‐
els) called a feature view.

The feature view is a selection of features and, optionally, labels to be used by one or
more models for training and inference. The features in a feature view may come
from one or more feature groups.

When you have defined a feature view, you can typically use it to:

• retrieve point-in-time correct training data,
• retrieve point-in-time correct batch inference data,
• build feature vectors for online inference by reading precomputed features and

merging them with on-demand and passed features,
• apply model-dependent transformations to features when reading feature data

for training and inference without introducing offline-online skew,
• apply on-demand transformations in online inference pipelines.

The feature view prevents skew between training and inference by ensuring that the
same ordered sequence of features is returned when reading training and inference
data, and that the same model-dependent transformations are applied to the training
and inference data read from the feature store. Feature views also apply on-demand
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transformations in online inference pipelines and ensure they are consistent with the
feature pipeline.

For training and batch inference data, feature stores support reading data as either
DataFrames or files. For small data volumes, Pandas DataFrames are popular, but
when data volumes exceed a few GBs, some feature stores support reading to Polars
and/or Spark DataFrames. Spark DataFrames are, however, not that widely used for
training pipelines (Python ML frameworks are used to train the vast majority of
models). For large amounts of data (that don’t fit in a Polars or Pandas DataFrame),
feature stores support creating training data as files in an external file system or
object store, in file formats such as Parquet, CSV, and TFRecord (TensorFlow’s row-
oriented file format that is also supported by PyTorch).

Different feature stores use different names for feature views, including Feature‐
Lookup (Databricks) and FeatureService (Feast, Tecton). I prefer the term feature view
due to its close relationship to views from relational databases - a feature view is a
selection of columns from different feature groups and it is metadata-only (feature
views do not store data). A feature view is also not a service when it is used in train‐
ing or batch inference pipelines, and it is not just a selection of features (as implied by
a FeatureLookup). For these reasons, we use the term feature view.

All major feature stores support on-demand transformations, but, at the time of writ‐
ing, Hopsworks is the only feature store to support model-dependent transforma‐
tions in feature views. Not all feature stores implement on-demand transformations
according to the data transformation taxonomy presented in this book, either. For
example, Databricks’ on-demand transformations are applied in training and online
inference pipelines. That is, Databricks’ on-demand transformations produce model-
specific features (as they cannot be used in feature pipelines to create reusable fea‐
tures).

Point-in-Time Correct Training Data with Feature Views
Now we look at how feature views create point-in-time correct training data using
temporal joins (see Figure 4-4 earlier). A temporal join processes each row from the
table containing the labels, and uses each row’s event_time value to join columns from
other feature tables, where the joined rows from the feature tables are the rows that
have their own event_time value that is closest to, but not greater than the label’s
event_time value. If there are no matching rows in the feature tables, the temporal
join should return null values.

This temporal join is implemented as an ASOF LEFT (OUTER) JOIN, where the
query starts from the table containing the labels, pulling in columns (features) from
the tables containing the features, with the ASOF condition ensuring there is no
future data leakage for the joined feature values and the LEFT OUTER JOIN condi‐
tion ensuring rows are returned even if feature values are missing in the resultant
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training data. The number of rows in the training data should be the same as the
number of rows in the table containing the labels.

In Figure 4-13, we can see how the ASOF LEFT JOIN creates the training data from 4
different feature groups (we omitted the account_details feature group for brevity).
Starting from the label feature group (credit_card_transactions), it joins in features
from the other 3 feature groups (aggregated_transactions, bank_details, mer‐
chant_details), as of the event_time in credit_card_transactions.

Figure 4-13. Creating point-in-time correct training data from time-series data requires
an ASOF LEFT (OUTER) JOIN query that starts from the table containing the labels,
pulling in columns (features) from the tables containing the features, with the ASOF con‐
dition ensuring there is no future data leakage for the feature values.

For example, in our credit card fraud data model, if we want to create training data
from the 1st January 2022, we could execute the following nested ASOF LEFT JOIN
on our label table and feature tables:

SELECT label.loc_diff, label.amount, aggs.last_week, bank.country,
  bank.credit_rating as b_rating, merchant.chrgbk, label.fraud
  FROM credit_card_transactions as label 
  ASOF LEFT JOIN aggregated_transactions as aggs 
  ON label.cc_num=aggs.cc_num 
  AND label.event_ts >= aggs.event_ts 
  ASOF LEFT JOIN bank_details as bank 
  ON aggs.bank_id=bank.bank_id 
  AND label.event_ts >=bank.event_ts
  ASOF LEFT JOIN merchant_details as merchant 
  ON label.merc_id=merchant.merc_id
  AND label.event_ts >=merchant.event_ts
  WHERE label.event_ts > '2022-01-01 00:00';

The above query returns all the rows in the label feature group where the event_ts is
greater than the 1st of January 2022, and joins each row with 1 column from aggrega‐
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ted_transactions (last_week) and the 2 columns from bank_details (rating and coun‐
try), and 1 column from the merchant_details table (chrgbk). For each row in the final
output, the joined rows have the event_ts that is closest to, but less than, the value of
event_ts in the label feature group. It is a LEFT JOIN, not an INNER JOIN, as the
INNER JOIN excludes rows from the training data where a foreign key in the label
table does not match a row in a feature table. In most cases, it is ok to have missing
feature values as you can impute missing feature values in model-dependent transfor‐
mations.

Feature Vectors for Online Inference with a Feature View
In online inference, the feature store provides APIs for retrieving precomputed fea‐
tures, computing on-demand features, and applying model-dependent transforma‐
tions. Creating feature vectors for online inference involves reading precomputed
features, computing on-demand features, and applying model-dependent transfor‐
mations. In our example from Figure 4-13, there are 2 queries required to retrieve
features (1) a primary key lookup for the mechant features using merchant_id and (2)
a left join to read the aggregation and bank features using cc_num. The feature view
provides an API to retrieve the precomputed features, as done in Hopsworks:

df = feature_view.get_feature_vectors( 
entry = [{"cc_num": 1234567811112222, "merchant_id": 212}]
)

On-demand transformations and model-dependent transformations also need to be
applied to the returned feature data, and we will look more at how feature views sup‐
port them in Chapter 7.

Conclusions
Feature stores are the data layer for AI systems. We dived deep into the anatomy of a
feature store and we looked at when it is appropriate for you to use one. We looked at
how to organize your feature data in Feature Groups, and how to organize your data
in a data model for batch and real-time AI systems. We also looked at how feature
views help prevent skew between training and inference, and how they are used to
query feature data for training and inference. In the next chapter we will look at the
Hopsworks Feature Store in detail.
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CHAPTER 5

Hopsworks Feature Store

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 5th chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

In this chapter, we will look in depth at the Hopsworks. Hopsworks is a clustered
platform that can be installed on as few as one server or as many as hundreds of
servers. Hopsworks includes a feature store, as well as a complete MLOps platform,
but we will focus on the feature store in this chapter. We will show how to implement
the data model for our credit card fraud model from Chapter 4 in Hopsworks. We
will also see how the feature store concepts from the previous chapter are represented
in Hopsworks using code snippets in Python. You can create a free account by regis‐
tering on Hopsworks Serverless. The account includes a generous free storage tier -
more than enough to build and operate the AI systems from this book. It is also
possible to install Hopsworks on a Kubernetes cluster (free for non-commercial use
or startups). We will start with projects in Hopsworks - a secure, collaborative space
for storing your feature data, training data, and models. If you are only interested in
private AI projects and not interested in security, you can safely skip this section.

139

https://github.com/featurestorebook/mlfs-book
mailto:gobrien@oreilly.com
https://app.hopsworks.ai


Hopsworks Projects
A Hopsworks cluster is organized into projects, where each project has a unique
name. Hopsworks projects are a secure space for teams to collaborate and manage
your data and models for AI. Similar to a repository in Github, a project has team
members (with role-based access control), but instead of storing source code, Hops‐
works projects store data for AI. Each project has its own feature store, a model regis‐
try, model deployments, and datasets for general purpose file storage.

The following code snippet shows how to get a reference to a project object when you
login to Hopsworks. If you do not enter the name of the project, Hopsworks will
return a reference to your main project (the project you created when you registered
your account on hopsworks.ai). With your project, you can get a reference to its fea‐
ture store as follows:

import hopsworks
project = hopsworks.login()
fs = project.get_feature_store()
 

The hopsworks.login() method also has parameters for the hostname (or IP) and
port of the Hopsworks cluster, as well as the API key (either as a value or a file con‐
taining the API key). In this book, we will use serverless Hopsworks, which has a
hostname of c.app.hopsworks.ai and a port of 443. In this book, we call hops
works.login()without parameters, instead setting HOPSWORKS_API_KEY as an
environment variable in your program.

Storing Files in a Project
Every project in Hopsworks has directories where you can store data. From the UI or
the Datasets API, you can upload and download files. For example, from the book’s
github repo, we can upload the titanic CSV file to a directory called Resources in your
project as follows:

dataset = project.get_dataset_api()
uploaded_path = dataset_api.upload("data/titanic.csv", "Resources", over-
write=True)

Setting overwrite=True makes the upload operation idempotent. You can download a
file from Hopsworks using its path (right-click on the file in the file explorer UI in
Hopsworks to get its path):

dataset_api.download(uploaded_path, overwrite=True)

If you navigate to Project Settings -> File Browser, you will see the directories listed in
Table 5-1 in your project.
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Table 5-1. The names and a description of the directories in your Hopsworks project, where
<proj> is the name of the project.

Directory Description
Airflow/ Stores Airflow Python programs for this project (DAG files).

Not used in this book.

DataValidation/ When expectations are attached to a Feature Group, every insertion/deletion creates a validation
report that is stored in the subdirectory <feature_group_name>/<version> as a JSON file.

<proj>
_featurestore.db/

The offline feature store directory containing the feature store lakehouse table files.

<proj>
_Training_Datasets/

When you save training data as files, by default, they are saved here in the
<training_dataset_name>/ <version> subdirectory (as .parquet, .tfrecords, .csv files).

Jupyter/ Store Jupyter notebooks run on Hopsworks in here. Typically check out git repositories in this
directory. Not used in this book.

Logs/ For (Python, Spark, Flink) Jobs run in Hopsworks, their output is stored here in a subdirectory:
[Spark/Python/Flink] /job_name/execution_id. Not used in this book.

Models/ Models saved in the Hopsworks model registry are stored in the <model_name>/<version>
subdirectory, along with its artifacts.

Resources/ A general purpose directory for files used in your project.

Statistics/ Statistics computed for feature groups and training datasets are stored in a subdirectory that
follows the naming convention <name>_<version>.

Two of the directories in your project store programs (Jupyter notebooks, Airflow
Dags). We will not use these directories in this book, however, as we will work with
serverless Hopsworks - we will run our programs outside of Hopsworks. If, instead,
you have your own Hopsworks cluster, you can use Hopsworks’ Git/Bitbucket sup‐
port to clone the book’s source code to the Jupyter directory and run Jupyter note‐
books and jobs from within Hopsworks.

Access Control within Projects
Projects support role-based access control (RBAC) inside the project. Each active
project member has one of two possible roles: the data owner role that has adminis‐
trator privileges within a project or the data scientist role that is a read-only role for
the feature store but can create training data and train models. The privileges for the
two roles are shown in Table 5-2.

Table 5-2. Privileges of the two roles for operations on Hopsworks services.

Data Owner Data Scientist
Project Membership Add/Remove/Update

Feature Store Read/Write/Update Read

Model Registry Add/Remove Add/Remove

Model Deployments Create/Start/Stop
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Data Owner Data Scientist
Project Directories Read/Write/Delete Read/Write/Delete all except read only for <proj>_featurestore.db/

Data Sharing Yes No

Access Control Across Projects
Projects can also be used to implement access control by placing users and feature
groups in different projects and selectively sharing access to feature groups across
project boundaries. We will examine these capabilities through an example. In
Figure 5-1, we can see how the five feature groups from Chapter 4 are organized
inside a single project called credit_card_transactions. The project’s members are
Denzel, the project owner who is responsible for the feature pipelines and model
deployment, with Jack and Tay, the data scientists, who train the models.

Figure 5-1. This “credit_card_transactions” project has 2 members, and 5 feature groups.

Hopsworks projects are a security boundary; they implement a multi-tenant security
model, where each project is the tenant in the Hopsworks cluster. As such, Hops‐
works supports project-level multi-tenancy. You can securely store data in a Hops‐
works project on a shared cluster, and, by default, users who are not members of your
project will not be able to access the resources in your project.

If you have your own Hopsworks cluster, any jobs you run on Hopsworks follow
dynamic RBAC. Dynamic RBAC is when a user changes its role (and privileges)
depending on some change in context. In Hopsworks, the context is the project from
which you run the job - your job will have the same privileges as your user within the
project the job is run from. If you go to a different project and run a job that that
other project, the job will have different privileges - it will have the same privileges as
your role in the other project. Hopsworks implements dynamic RBAC by every mem‐
ber of a project having a user identity unique to that project - enabling project-
specific access control policies. When you perform an action from within a project,
you execute that with your project-specific identity. Your project-specific user in one
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project does not have access to other projects you are a member of. Every project you
are a member of has a different project-specific user and, by default, access control
policies for project-specific users restrict their privileges to only allow access to
resources inside the project.

However, what happens if you want to share data from one project to another? Hops‐
works supports secure sharing of feature groups and feature views with other
projects. This enables us to re-factor our project from Figure 1 into smaller projects
that share feature groups with one another, but that have tighter access control on the
data. That is, you can implement the principle of least privilege (giving users the min‐
imal set of privileges they need to get the job done, and no more) through a combina‐
tion of putting sensitive data in their own projects with restricted membership and
then sharing that data selectively only those projects that require access.

In Figure 5-2, we reorganized the feature groups from Figure 5-1 to move account_fg
to a new know_your_customer project, and the bank_fg and merchant_fg to a new
commercial_banking project.

Figure 5-2. We refactored our project from Figure 5-1. to store our feature groups in 3
different projects. The new know_your_customer and commercial_banking projects
share their feature groups (read-only) with the credit_card_transactions project. Mem‐
bers Jack, Tay, and Denzel of the credit_card_transactions project can now read feature
data from all feature groups, but they can only write to the cc_trans_fg and
cc_trans_aggs_fg feature groups.

Then, we share these feature groups read-only with the original credit_card_transac‐
tions project, whose members now the same read privileges to the data as earlier
(when all feature groups were in a single project), but the data owner Denzel has lost
write privileges to account_fg, bank_fg, and merchant_fg. This type of data organiza‐
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tion is often known as a data mesh, where instead of a central data team (in one
project) managing all data, data ownership is distributed across different business
domains (projects).

The best practice for organizing data and users in projects is informed by whether
you are doing development, testing in staging, or running in production. For less fric‐
tion in development, you should give each team/developer their own development
project (with all users having the data owner role). For staging and production, you
should follow the principle of least privilege - give the minimal read/write/execution
privileges to users such that they can accomplish their tasks. One practice that I have
often seen is to give read access to production data to developers by sharing read-only
access to production data from development projects. Sometimes this is necessitated
by huge data volumes, but, in general, this removes the need to metaphorically throw
data over the wall to data scientists.

Feature Groups
A feature group in Hopsworks is a table of features, where a feature pipeline updates
its feature data, and training/inference pipelines read its data via feature views. In
Figure 5-3, we can see the backing stores for feature group data in Hopsworks.

Figure 5-3. In Hopsworks, a feature pipeline writes to a feature group with the batch or
stream API. Hopsworks ensures the consistency of feature data across online/offline
stores and the vector index. You query/read feature data using a feature view (that may
apply model-dependent transformations when reading data). Queries are mapped to one
of the backends - the online store, offline store, or vector index.

Hopsworks’ online store is RonDB, an open-source, distributed, highly-available,
real-time database, developed by Hopsworks and forked from the open-source
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MySQL NDB Cluster. The offline store is a Lakehouse table (Apache Hudi, Delta
Lake, Apache Iceberg), stored either in Hopsworks or in a S3 compatible object store.
It is also possible to create an external feature group where the offline store is an
external data warehouse, such as Snowflake, BigQuery or Redshift. As such, the off‐
line store can be a mix of external tables and Hopsworks managed lakehouse tables.
You can also store vector embeddings in a vector index for a feature group. Clients
typically read data from feature groups using feature views. The feature view provides
both Offline and Online APIs that query data from the offline and online stores,
respectively. There is also a similarity search API for feature groups that store vector
embeddings, enabling you to find the N closest matching rows for a client provided
vector embedding.

To create a feature group in Hopsworks, you first login and get a feature store object
for your project, then you can use either create_feature_group(), which returns an
error if the feature group already exists, or get_or_create_feature_group(), an idempo‐
tent operation that returns the feature group if it already exists. The following code
snippet shows example code for creating an online feature group, with a vector
embedding, using a DataFrame:

fs = hopsworks.login().get_feature_store()
df = # Read data into (Pandas/Polars/PySpark) DataFrame
 
# Use the default Embedding Index 
emb = embedding.EmbeddingIndex()
# Define the column that contains vector embeddings
emb.add_embedding(df['col_with_embedding']) 
 
expectation_suite = … # Define Data Validation Rules for ingestion
 
fg_cc_aggs = fs.create_feature_group(
    name="cc_trans_aggs_fg",
    version=1,
    description="Aggregated credit card transaction features",
    primary_key=['cc_num'],
    partition_key=['date'],
    event_time='datetime',
    online_enabled=True,
    time_travel_format='DELTA',
    embedding=emb,
    expectation_suite=expectation_suite,
)
fg_cc_aggs.insert(df)

The feature group must have a name, a version, and a primary key. You can provide an
optional description for the feature group. It is also possible to set descriptions for
individual features using the feature group object. The feature group can be either
offline-only (online_enabled=False), which is default, or online
(online_enabled=True), in which case tables are created in both the offline and online
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stores for the feature group. For the offline tables, you can specify the table format for
the offline tables (time_travel_format='HUDI’ is default). Available table formats are
Apache Hudi (‘HUDI’), Delta Lake (‘DELTA’), and Apache Iceberg (‘ICEBERG’). The
index columns included in a feature group definition are:

• a mandatory primary key defined on one or more columns,
• an optional event_time defined on one column (set for time-series data),
• an optional partition key defined on one or more columns,
• optional foreign keys defined on one or more columns.

The primary key for a feature group uniquely identifies an entity in the feature group.
If the feature group has an event_time column, then there may be many rows in the
feature group for that entity. Each row will have a different event_time value and have
the feature values at that point in time. In this case, the unique identifier for each row
is the combination of the primary key and event_time. For example, in our cc_trans_fg
feature group from Chapter 4, there may be many rows with the same cc_num, but
each row will have a different event_ts indicating when the transaction for the credit
card with that cc_num took place. The primary key can be defined over one column
or over two or more columns (composite primary key). For example, in the bank_fg
feature group, we could make the primary key a combination of both the bank_id and
the country column, so that the bank_id could refer to HSBC (which is located in
many different countries). You can define a column as a foreign key, indicating that it
refers to a primary key in another feature group. Foreign keys are used when creating
a feature view (the selection of features for a model) to join the features from different
feature groups together.

A foreign key is a column in a feature group that is used to join fea‐
tures from another feature group. The join column must point to a
primary key in a different feature group. In Hopsworks, foreign
keys are not statically bound to a specific feature group. Instead,
they support late binding. That is, when you create a feature view,
you specify the join key from one feature group to another. Hops‐
works validates that the join key is a foreign key, and that it points
to a primary key in the joined feature group. Foreign keys ensure
that training data contains the correct number of rows. In row-
oriented databases, foreign keys can also have constraints, such as
‘ON DELETE CASCADE', but Hopsworks does not support for‐
eign key constraints.

Hopsworks also supports data layout optimizations for the offline (lakehouse) tables,
which can help when your queries become slow because your table stores a lot of
data. You can define a partition_key on one or more column(s) to partition data in
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the offline store (it has no effect on the online store, as RonDB automatically parti‐
tions data). The partition_key determines the subdirectory (of your feature group
directory) in which the data (Parquet) files are written to in the offline store. That is,
all rows in your feature group with the same partition key value(s) store their Parquet
files in the same subdirectory of the feature group. In the above feature group cre‐
ation code snippet, the date column is set as the partition key, so when you insert a
DataFrame, all of its rows with the same date value will end up in the same subdirec‐
tory (in the feature group’s directory). Then, when you query data from that feature
group, for example, with date=”2024-11-11”, only the Parquet files in the
“2024-11-11” subdirectory will be read - skipping the data files for all the other sub‐
directories for all other dates containing feature data. This is known as Hive-style par‐
titioning and when a query can skip reading many of the data files, it is known as data
skipping. Hive-style partitioning works well if you have one or columns with relatively
low cardinality. If, however, you pick a partition_key with high cardinality, you will
have a new directory for every unique value of your partition_key. So do not, for
example, make the partition_key the same as the primary key!

The most common use case for partitioning is where you have a feature pipeline that
runs once per hour/day/week and creates GBs/TBs of data, then you create a new date
column (by extracting the date from your event_time column) and make it the parti‐
tion_key. Every time your feature pipeline runs, a new directory will be created stor‐
ing the data for that datetime in the feature group. Then, when you query the data
and set a filter on the date for a given time period, only the data for the requested
time period will be read from the offline store, speeding up queries.

Versioning
Hopsworks supports creating multiple versions of feature groups, where each version
contains its own offline/online tables and vector indexes. Hopsworks also supports
data versioning within a given version of a feature group. That is, every time data is
added/updated/deleted to/from a feature group, Hopsworks stores the changes, ena‐
bling Git-like operations on feature groups. Data versioning is based on time-travel
capabilities found in lakehouse tables.

Data Versioning in Feature Groups and Time-Travel
Hopsworks tracks mutations (appends, updates, deletions) to feature groups as com‐
mits. When data is either upserted (inserted or updated) or deleted to/from a feature
group, each group of changes to the rows in a feature group is called a commit. Every
commit has a unique ID and a timestamp, see Figure 5-4.
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Figure 5-4. Every time you update data in a feature group, a new commit is performed
on the feature group. A history of commits is stored on the feature group, enabling you to
read changes made by a commit or to read the state of a feature group at a given commit
(point-in-time).

A commit contains a set of updates/deletes/appends to rows in the feature group.
Each commit has an associated timestamp, and as long as a commit has not been
compacted, you can time-travel on a feature group to read its state ‘as of ’ a given
timestamp. In Figure 5-4, you can also see how rows in feature groups are removed
by providing a DataFrame df containing the primary key values for the rows to be
deleted, then calling fg.delete_rows(df).

Feature groups support both time-travel and incremental queries:

• time-travel to read data in the feature group ASOF a provided timestamp or
commit-id. The timestamp here does not refer to the event_time column in a fea‐
ture group, but rather the ingestion time for the commit.

• Incremental queries read the data changed in commits to a feature group during
a specified time range, that is, the row-level upserts (inserts or updates).

You can call read_changes() to read records upserted within a specified time range as
a DataFrame. The time range is specified with a starting timestamp and an optional
ending timestamp. If no ending timestamp is set, the range returned will include all
records since the starting timestamp. You can provide the ingestion time as a parame‐
ter to the read() method to read the state of the feature group AS OF that point in
time, see Figure 5-5.
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Figure 5-5. For version 2 of the bank_fg feature group, we read the changes in the pro‐
vided date interval as df1 containing the rows updated/appended in the time range pro‐
vided. We then read the state of the feature group into df2 as of the provided timestamp.
If you omit the timestamp, read() returns the latest data.

Note that the ingestion time refers to the physical (actual) time at which that commit
was ingested into Hopsworks. The ingestion time can be confusing, because your fea‐
ture group may also have an event_time column indicating the value of a feature as of
a point in time. Ingestion time and event time are different concepts. For example,
imagine in our air quality project from Chapter 3 where a sensor was offline from
days 4-9, as shown in Figure 5-6.

Figure 5-6. In this diagram, we see air quality measurements from days 4-9 arrive late
on day ten. They arrived just after Training Dataset v1 was created. If we want to repro‐
duce Training Dataset v1 at a later point in time, we should not include the late arriving
data in it.
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The weather updates came for every day, but on day ten, we received the missing six
days of air quality measurements. They arrived late. The event_time values for these
six late arrivals are the days 4-9, respectively, which makes sense as the event_time
refers to the day the air quality measurement was taken. However, the ingestion time
for the late arrivals is day ten - the event time doesn’t match ingestion time. In real-
world systems, late arriving data is a fact of life, and systems need to be designed to
account for it.

If you read the feature group on day nine, it will not include any of the air quality
measurements from days 4-9, but if you read it on day ten it will include days 4-0.
The Training Dataset v1 was created on day nine, however, and it does not include
days 4-9. If I later delete Training Dataset v1, but have to reproduce it, I would like it
to be exactly the same as the original (compliance will demand this). I do not want it
to include the air quality data for days 4-9. However, if I only used a query based on
the event time to reproduce the training dataset, it would include the data from days
4-9. The solution is to use ingestion time to recreate Training Dataset v1 exactly as it
was created on day nine. Luckily, Hopsworks does this transparently for you when
you call any of its feature view methods to re-create training data using its version
number, such as:

X, y = feature_view.get_train_test_split(training_dataset_version=1)

We have now seen the ASOF term twice now in different contexts.
When you recreate a training dataset, you want to include the fea‐
ture data ASOF its ingestion time (the feature data that existed at
that time). But when you create point-in-time correct training data,
you want the value of the features ASOF the event time, as you
want to include the correct value for that feature at that point in
time.

Updating and Versioning Feature Groups
Data versioning is only concerned with changes to the rows in feature groups. What
if you want to add, remove, or update the features in a feature group? You can add a
new feature to a feature group as follows, and existing clients of the feature group will
work as before:

features = [
    Feature(name="limit", type="int", default_value=1000)
]
fg = fs.get_feature_group(name=”cc_trans_fg”, version=1)
fg.append_features(features)

However, if you want to change the data type for a feature or delete a feature from a
feature group, then you are making a breaking schema change. Existing clients of the
feature group will not work because one or more of the features they expect will
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either have the wrong data type or not exist. Another less obvious breaking change is
if you change how a feature is computed. You shouldn’t mix the old feature values and
new feature values in the same feature in a feature group. This will not break clients,
but any models you train on the mixed feature data will not perform well.

The solution to breaking (schema) changes is to create a new version of the feature
group with new feature(s). For example, in Figure 5-7, the cc_fraud_v1 model is
upgraded to cc_fraud_v2 which uses a new version v2 of the account feature group.
When a model depends on a feature group for precomputed features, the model and
feature versions are tightly coupled requiring synchronized upgrades and down‐
grades of model/feature versions.

Figure 5-7. Here, v2 of the cc_fraud model uses new features only available in v2 of the
account feature group. In order to be able to downgrade (in case of error), you need to
maintain the older v1 of the account feature group.

When you create a new feature group version, new offline/online tables will be cre‐
ated, so you may need to backfill the new feature group version with data from the
old feature group version. The backing table name in the offline/online stores is <fea‐
ture_group_name>__<version>.

When a feature group has a large amount of data, you may want to avoid creating a
new version of a feature group. Sometimes, you can just keep appending new fea‐
tures, leaving the old feature versions in the feature group (but maybe not used by the
latest model version). That can also be expensive as appending a new feature requires
updating all existing rows in the table with a default_value. For example, assume you

Feature Groups  | 151



have a feature group with hundreds of columns that stores 10s of TBs of data, but you
only want to change how one column is computed. You don’t want to create a new
version of the feature group and backfill the whole feature group. You don’t either
want to append a new feature as that will require updating all rows in the feature
group with the new column and its default value - in lakehouse tables that will proba‐
bly require rewriting all of the data files. Instead, you can create a new feature group
with a different name, but with the same primary key as the original feature group,
see Figure 5-8. You will need to backfill the new column for this feature group, but it
will be a much less expensive operation than backfilling hundreds of columns.

Figure 5-8. When creating a new version of Original Feature Group is too expensive, you
can create New Feature Group that stores a new categorical version of the limit feature.
A model that uses Feature View (v1) can be retrained with the new feature by updating
its feature view to v2, replacing the old limit feature with the new one, but keeping the
other features unchanged.

The new feature, from Figure 5-8, is a categorical limit feature in our new feature
group that we will compute from the sparse limit feature. You need to write a trans‐
formation function that converts the numerical limit value to categorical value (high,
med, or low). That transformation function can be used to backfill the new feature
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group with all of the values from the original feature group, and it should also be
included in a feature pipeline that will update the new feature group.

Now, assume we have a model (v1) that we want to update to (v2) to use the new cate‐
gorical limit feature instead of the numerical limit. What we can do is create a new
feature view (v2) that replaces the old numerical limit with the new categorical limit,
but keeps all the other features from feature view (v1). Creating feature views is a
metadata only operation, so it is cheap. The new feature view can now create new
training data and train model (v2).

Assume, now that you have a model that uses the old feature and you want a new
version of the model that instead uses the new version of the feature. For the new
model, you create a new feature view that uses all the features from the feature view of
the previous model, replacing the old feature with the new one. When you read train‐
ing/inference data from the new feature view, it will join the original features (not
including the feature you are replacing) with the new version of your feature. An
example notebook for this pattern is available in the book’s github repository.

Online Store
When you create a feature group, you have to decide whether the feature data will be
stored in the online store or not. By default, a table is not created in the online store.
To enable the online store, you have to specify online_enabled=True when you create
the feature group. In contrast, a table is always needed in the offline store. You should
make a feature group online_enabled if the feature data it stores will be read by inter‐
active or real-time AI systems. If the feature data will only be used by batch AI sys‐
tems, then do not make it online_enabled, as it will add cost in data storage and slow
down writes. If you want an online-only feature group, with no data in the offline
store, then you specify that writes should not be materialized to the offline store:

fg.insert(    df, 
write_options={"start_offline_materialization":False}
)

Hopsworks’ online stores feature data either in-memory or in on-disk columns. By
default, it uses in-memory tables, which have lower latency and higher throughput
compared to on-disk columns. However, in-memory tables require enough RAM to
store the data, and when you have feature groups that will store many TBs of online
data, it may be more cost efficient to use on-disk tables. You can specify that the
online feature data will be stored on-disk when you create the feature group as fol‐
lows (the table_space ts_1 is the default parameter for the on-disk table in RonDB):

fs.create_feature_group( …
    online_enabled=True,
    online_config={'table_space': 'ts_1'}
)
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Hopsworks’ online store is RonDB, an open-source, distributed,
real-time database that has both key-value and SQL APIs. It can be
configured to be highly available either within a data center (with
replication based on a non-blocking variant of the two-phase com‐
mit protocol) or across geographically separated data centers (using
asynchronous replication). RonDB can scale to store in-memory
tables with tens of TBs or store the feature columns as on-disk col‐
umns. The primary key and indexes are stored in-memory. RonDB
has been designed to support feature store workloads, with support
for projection pushdown, predicate pushdown, pushdown aggrega‐
tions, composite primary keys, and pushdown left joins. For fur‐
ther reading on the performance impact of these capabilities, I
recommend our research paper at SIGMOD 2024.

Time-to-Live
By default, the event_time column is not included in the online table, and the online
table only stores the latest feature values for each entity. When you write new feature
data for an entity, the row containing the feature data for that entity is overwritten.
This bounds the size of your online table to the number of entities in your table.

However, what if you have hundreds of millions of entities and the feature data
becomes stale for an entity after a period of time? Or what if you want to perform
online aggregations for an entity, then you will need to include the event_time col‐
umn in the online table to be able to store many rows for each entity? In both of these
cases, you should specify a time-to-live (TTL) value for rows, whereby rows are
removed from the database when they exceed the specified TTL defined on the fea‐
ture group. For example, if the TTL is one hour, then one hour after the event_time
for a row has passed, the row will be scheduled for deletion. You can define the TTL,
at minute level granularity, when you create an online_enabled feature group:

fs.create_feature_group( …
    TTL_mins=120,
    online_aggregation=True
)

If you set online_aggregation=True, then the online store stores many rows for the
same entity (with different event_time values). TTL expiration is a background pro‐
cess, and expired rows are typically deleted within 15 minutes of expiration, although
under situations with high database load, it may take a bit longer.

It is important to note that Hopsworks also handles potential data leakage caused by
the TTL. When you are creating training data, what should happen if the
label.event_time is 01:00 and a feature.event_time for that label is 00:15, but the TTL is
30 minutes? You shouldn’t include that feature value, otherwise there will be leakage.
The reason why is that the online store would have removed the feature’s row at
00:45, when its TTL expired. When the label event arrives at 01:00, there would be no
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feature value to retrieve. This is a subtle, yet pernicious, form of data leakage that
Hopsworks prevents. The general rule here is that when you create training data
using features from a feature group with a TTL, the feature value will be null if the
following holds:

label.event_time - feature.event_time > TTL

Vector Embeddings
Vector embeddings enable approximate nearest neighbor (ANN) search (also known
as similarity search) for rows in online_enabled feature groups. You create a vector
embedding by taking high dimensional data (such as text or images or a mix of data),
passing it to an embedding model that then compresses the input data into a fixed size
array of floating point numbers. The vector embedding is the output array of floating
point numbers and what is astonishing about it is that, even after compression, it
retains semantic information about the original input data. You can take millions of
images or books of text (split into paragraphs), compute vector embeddings from
them, and then pass in a new image or piece of text, and ANN search will find the
closest images or paragraphs of text to the new data. And they work really well, even
though it is a probabilistic matching.

To add vector embeddings to a feature group, you specify which columns in your
DataFrame that contain the vector embeddings. The column values are then inserted
into a vector index so that you can call find_neighbors() on the feature group to find
rows with similar values. However, before inserting rows into an embedding feature
group, you need to first compute the vector embeddings for the columns using an
embedding model. There are many off-the-shelf embedding models that can be used,
such as the sentence transformers model in the example below. You can also train your
own embedding model.

When you design a data model that includes an embedding feature
group, you should know that writing rows to a vector index is sig‐
nificantly slower than writing to the online feature store. The
online feature store supports millions of concurrent writes per sec‐
ond, while the vector index is orders of magnitude slower. If you
have non vector embedding columns in an embedding feature
group that are updated more frequently than the vector embedding
column, you should probably refactor your feature group to move
the frequently updated columns to a separate feature group.

We will now look at our example credit card transaction fraud system and how we
add support for vector embeddings. Suppose you are doing some EDA on fraudulent
transactions and would like to find the most similar rows to a row marked as fraud.
That’s hard, as there may be tens of thousands of rows of fraudulent transactions or
more. The cc_fraud table (in Postgres) that contains the fraud labels also has a string
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column called explanation. The column contains a human written description of the
reason the transaction was marked as fraudulent. We can add the cc_fraud table as a
new feature group to enable similarity search for fraudulent transactions using the
explanation. You can run the following code to create a vector embedding using an
open-source sentence-transformers (embedding) model, that maps the explanation to
a 384 dimensional array:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
 
df = pd.read_csv("https://repo.hops.works/dev/jdowling/cc_fraud.csv")
embedding_body = model.encode(df['explanation'])
 
df['embed_explanation'] = pd.Series(embedding_body.tolist())
emb = embedding.EmbeddingIndex()
emb.add_embedding('name', model.get_sentence_embedding_dimension())
 
fg_fraud = fs.create_feature_group(
    name="cc_fraud_fg",
    version=1,
    description="Credit Card Fraud Data",
    primary_key=['tid'],
    event_time='datetime',
    embedding=emb
)
fg_fraud.insert(df)
 

You now perform similarity search on the new feature group, passing a vector embed‐
ding to the feature group’s find_neighbor() method:

model = SentenceTransformer('all-MiniLM-L6-v2')
search_query = "Geographic attack in South Carolina"
fg_fraud.find_neighbors(model.encode(search_query), k=3)
res = fg_fraud.find_neighbors(model.encode(search_query), k=3)

The above code will return the 3 rows in the feature group that had an explanation
column value that is most similar to the search string “Geographic attack in South
Carolina”.

Offline Store (Lakehouse Tables)
Hopsworks’ offline store is lakehouse tables. Hopsworks supports three different
types of lakehouse table, each with their own strengths: Apache Iceberg, Apache Hudi
and Delta Lake. All three formats support time-travel, but there are other properties
leveraged by Hopsworks:

primary key uniqueness
Enforced by Hudi, but not by Iceberg or Delta;
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data skipping
Hive-style partitioning is supported across all three file formats, but additionally
there is Z-Ordering (Hudi, Delta), Liquid Clustering (Delta), and Hilbert Space
Fitting Curves (Hudi);

read_changes
File formats support CDC queries, although full support will only come in Ice‐
berg v3.

Delta and Iceberg do not enforce the uniqueness constraint for primary keys, and this
means you have duplicate rows when you create training data. The ASOF LEFT JOIN
(used to create training data from Chapter 4) joins features to labels and if there are
multiple matching rows in a joined feature group, you will get multiple output rows
for each row in your label feature group. That is not desired behavior, as a feature
should have only one value for a given label. For this reason, Hopsworks uses Apache
Hudi as the default offline store.

External Feature Groups
If you already have existing tables with feature data in a data warehouse or object
store, you can create an External Feature Group from that table. In External Feature
groups, the offline table is the external data warehouse (such as Snowflake, BigQuery,
Redshift, or any JDBC-compatible database). No offline data will be stored in Hops‐
works, only metadata.

An external feature group first needs a storage connector for your external store.
Hopsworks supports storage connectors to JDBC data sources, GCS, S3, Snowflake,
BigQuery, and other data sources. External feature groups also include a query
parameter. This is a SQL statement, used to read the desired columns from the exter‐
nal table. The SQL query can also be used to perform any SQL operation supported
by the external store (aggregations, filtering, etc). This means that feature data from
external feature groups is computed when it is read. Here, we show you how to define
account_fg as an external feature group:

query = """
SELECT account_id, cc_expiry_date, event_time FROM account_details
"""
external_fg = fs.create_external_feature_group(
            name="sales",
            version=1,
            description="Physical shop sales features",
            primary_key=['account_id'],
            event_time='event_time',
            online_enabled=True,
            query=query,
            storage_connector=sc
            )
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external_fg.save()
 

If your external feature group is online_enabled, you need to explicitly synchronize
the data from the offline store to the online store.

Data Statistics
When you write data to the offline feature group, by default, Hopsworks computes
and saves descriptive statistics for features. Statistics are used for both EDA as well as
to monitor for feature drift (see Chapter 13). Hopsworks can compute histograms for
categorical variables (counts for each of the categories), a correlation matrix for the
features (to help identify redundant features that can be removed), descriptive statis‐
tics for numerical features (min, max, mean, standard deviation), the sparsity of a fea‐
ture through exact_uniqueness (values closer to 1 indicate more unique values). You
provide the list of features that you want to compute features for in the columns
parameter of the statistics_config dictionary.

fg_cc = feature_store.create_feature_group(name="cc_trans_fg",
    statistics_config={
        "enabled": True,
        "histograms": True,
        "correlations": True,
        "exact_uniqueness": False,
        "columns": ["feature1"]
    }
)
fg_cc.compute_statistics()

Note that computing statistics is expensive, particularly if they are computed on large
volumes of data.

Change Data Capture (CDC) for Feature Groups
Sometimes, it is useful to build event-driven feature pipelines by executing actions
when rows in a feature group have changed. One example use case is when you have a
large number of entities and you want to make predictions for entities after changes
in their feature values. You can do this by enabling change data capture (CDC) API
for a feature group by providing a Kafka topic for the feature group:

kafka_api = project.get_kafka_api()
my_schema = kafka_api.create_schema(SCHEMA_NAME, schema)
my_topic = kafka_api.create_topic(TOPIC_NAME, SCHEMA_NAME, 1, replicas=3, parti-
tions=8)
 
fg_cc_ags = feature_store.create_feature_group(name="cc_trans_fg",
    notification_topic_name=TOPIC_NAME,
)
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Rows that are updated in the cc_trans_fg feature group are published to the Kafka
topic (TOPIC_NAME) and consumers of the changes can subscribe to the Kafka
topic to consume the rows that were updated.

Feature Views
As introduced in Chapter 4, feature views bridge the gap between feature groups and
models by storing the list of input and output features for a model. The main steps in
creating and using feature views are:

• selecting the features and labels/targets that will be used by your model
• defining any model-dependent transformations you want to perform on your

features
• creating the feature view from your feature selection and model-dependent trans‐

formations
• creating training data for your model with your feature view
• creating batch inference data for your model with your feature view
• creating online inference data for your model with your feature view.

We will work with the credit card fraud example and use the feature view to create
training and inference data for our model.

Feature Selection
When you want to create a model, you will need to select columns from feature
groups for your model. Most of these selected columns will be inputs (features) to
your model, but, for supervised learning, one or more columns will be the output
labels or targets for your model. For all feature groups that contain columns you want
to include in your model, you need to be able to join those feature groups either
directly (think star schema from Chapter 4) or transitively (snowflake schema) with
the label feature group.

To start with, you should identify the label feature group for your feature view. Each
feature view has at most one label feature group containing the labels. To join features
with your label feature group, your label feature group needs to have a foreign key to
the feature group that contains those features. In Chapter 10, we will look at how to
add foreign keys to label feature groups, but for now we will assume those foreign
keys exist. Any feature group joined to the label feature group can, in turn, have for‐
eign key(s) to other feature groups that can also be included in the feature selection.
You can also create a feature view without labels, for unsupervised learning, in which
case the label feature group is just the leftmost feature group in a feature selection
statement.
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In our credit card fraud data model, cc_num in cc_trans_fg is a foreign key to
cc_trans_aggs_fg. Similarly, merchant_id in cc_trans_fg is a foreign key to mer‐
chant_fg. We can also transitively include features from bank_fg and account_fg, as
their primary keys are foreign keys in cc_trans_aggs_fg. We start by getting references
to those feature groups.

labels = fs.get_feature_group("cc_trans_fg", version=1)
aggs = fs.get_feature_group("cc_trans_aggs_fg", version=1)
merchant = fs.get_feature_group("merchant", version=1)
bank = fs.get_feature_group("bank_fg", version=1)
account = fs.get_feature_group("account_fg", version=1)

You specify which features to join by calling one of the select methods on a feature
group:

• select_features() selects all the feature columns (not index columns and foreign
keys)

• select_all() selects all the columns (includes index columns and foreign keys)
• select_except([‘f1’, ‘f2’, …]) selects all the columns except those in the provided

list
• select([‘f1’, ‘f2’, …]) selects only those columns in the provided list

The select methods return a Query object that represents the selection of features. You
can read feature data with a Query object, add a filter to read a subset of feature data,
inspect the temporal query string used to create the feature data, and most impor‐
tantly, you can call join() on it to join with other Query objects (that represent fea‐
tures selected from other feature groups). Here are the select and join methods that
are used to create the selection of features (and the label) used in our credit card
fraud model:

aggs_subtree = aggs.select_features()
.join(bank.select_features())
.join(account.select_features()
 
selection = labels.select_features()
.join(merchant.select_features())
.join(aggs_subtree)

In the above code, we do not specify any join key explicitly. Hopsworks’ looks for the
column(s) in the left-hand feature group that has the same name and type as the pri‐
mary key in the right-hand (joined) feature group. If there is no match, you have to
explicitly define the join key. For example, if the primary key of account_fg were id
(instead of account_id) we would have to construct the join as follows:

aggs.select_features().join(bank.select_features(),
left_on=["account_id"],right_on=["id"])
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If there is a clash between feature names from the left and right feature groups (both
feature groups have a feature with the same name), in the join method, you can use
the parameter prefix=”abc_” to add a prefix to the feature names from the right hand
feature group.

Model-Dependent Transformations
In Hopsworks, you can declaratively attach a transformation function to any of the
selected features in your feature view. The transformation functions are executed in
the client after data has been read from the feature store with a feature view. As fea‐
ture views are only used in training and inference pipelines, these transformation
functions are model-dependent transformations. You can use either built-in transfor‐
mations (such as min_max_scaler) or define your own custom transformation func‐
tion, such as here:

from hopsworks import udf
 
@udf(float)
def f1(amount, days_until_expired, stats: TransformationStatistics):
    return (amount * days_until_expired) / stats["amount"].median

In the above example, we can see that the transformation function is parameterized
by the TransformationStatistics object that contains statistics that were computed over
features in the training dataset. Many transformation functions are parameterized by
statistics computed on the training dataset, such as those that encode categorical fea‐
tures or scale numerical features.

Transformation functions can be defined either as a Python User-Defined Functions
(UDFs) or a Pandas UDF. Pandas UDFs scale to process large data volumes, for
example, in PySpark training dataset pipelines, but they add a small amount of
latency in online inference pipelines. Python UDFs, in contrast, scale poorly when
data volumes increase, but have lower latency in online inference pipelines.

Creating Feature Views
Once you have selected your features and defined your model-dependent transforma‐
tions, you can create a feature view as follows:

feature_view = fs.create_feature_view(
    name='cc_fraud',
    query=selection,
    labels=["is_fraud"],
    transformation_functions = [ MinMaxScaler("amount") ],
    inference_helper_columns=[‘cc_expiry_date’,‘prev_loc_transaction’, 
‘prev_ts_transaction’]
)
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Typically a feature view is created for one model or a family of related models. For
example, if you have models for customers in different geographic regions, you could
use the same feature view to represent the models for all of your customers, and then
apply filters when creating training data or batch inference data to only return the
data for the model’s geographic region:

feature_view.filter(Feature("region")=="Europe").training_data()

When you use one or more filters to create training data, the filter(s) is stored as
metadata in Hopsworks, so that you can later reproduce the training data using only
metadata.

A feature view does not have a primary key, instead it has serving keys. When you use
a feature view to retrieve one or more rows of features (feature vectors) via the Online
API, you have to provide values for the serving keys. The serving keys are the foreign
keys in the label feature group for the feature view. In our credit card fraud example,
the serving keys from cc_trans_fg are (cc_num, merchant_id), as both of these foreign
keys were used to create our feature view. You can inspect a feature view’s serving
keys as follows:

print(feature_view.serving_keys)

Other parameters that can be provided when creating a feature view are train‐
ing_helper_columns and inference_helper_columns. Sometimes during training or
inference, you need helper columns that will not be used as features. For example,
helper columns could be used as inputs to transformation functions, but will not
themselves be features. In our credit card fraud system, we define three columns as
inference_helper_columns, as they are all used as parameters in transformation func‐
tions used to compute on-demand features: haversine_distance, time_since_last_trans,
and days_to_card_expiry. When you read online inference data with the feature view,
you will receive these columns and then use them to compute the on-demand fea‐
tures (they are parameters to the transformation functions). However, you will not
include them as input parameters when calling model.predict(). When you use the
same feature view to read training data, fv.training_data(), it will not return the infer‐
ence_helper_columns, as they are only needed during inference (there are no on-
demand transformation functions in training pipelines). Similarly,
training_helper_columns are returned when you create training data, but not returned
when you read (batch or online) inference data.

Training Data as either DataFrames or Files
With your feature view, you can read training data as Pandas DataFrames or create
training data as files, see Table 5-3.
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Table 5-3. You can read training data as either Pandas DataFrames or create training data
as files. Deep learning models often create large training datasets as files, while decision tree
models have smaller training datasets that can often be read directly as DataFrames.

When to Use Most Common ML Frameworks
Pandas DataFrames
(Training Pipeline)

Tabular data < 10 GBs Scikit-Learn, XGBoost, Catboost, Prophet

Files: .tfrecord, .parquet, .csv
(Training Dataset Pipeline)

Tabular data > 1 GB
or Tensor datasets

PyTorch, TensorFlow, Jax

You often split training data into a training set and a test set. The feature view pro‐
vides convenience methods that read and split the training data in a single method
call.

Typically, you read data from files, but query a feature store.
Querying is more powerful than just reading training data as files,
as you can filter data based on your needs. For example, you might
need a time window of data or user data from a geographic region
and querying will only read the data requested.

Random, Time-Series, and Stratified Splits
You can read your training data, split using a random split into training and test sets
of features (X_) and labels (y_), as follows:

X_train, X_test, y_train, y_test = fv.train_test_split(test_size=0.2)

The above example gives you 80% of the data in the training set (X_train, y_train)
and 20% in the test set (X_test, y_test). Sometimes, you also need a validation set in
addition to the training and test sets. For example, if you want to perform hyperpara‐
meter tuning, you should not evaluate model performance using the test set (other‐
wise the test set can leak into model training). Instead, you can create an additional
validation set, on which you evaluate training runs with different hyperparameters:

X_train, X_validation, X_test, y_train, y_validation, y_test = fv.train_valida-
tion_test_split(validation_size=0.15, test_size=0.15)

In this case, the test set is the holdout set used to evaluate final model performance,
after hyperparameter tuning is finished.

The same train_test_split and train_validation_test_split functions can also return a
time-series split of your training data. As a rule, you should never create a random
split of time-series data - as temporal patterns and trends get lost in randomization.
Instead, specify a time-range for each of your training, validation, and test sets. In the
sample code below, the training set time window is from the 1st-31st January 2024,
and the test data is the data that arrived after the 1st-7th of February 2024:
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X_train, X_test, y_train, y_test =
  fv.train_test_split(start_train_time="20240101", end_train_time="20240131", 
start_test_time="20240201", end_test_time="20240207")

If you omit the start_test_time, the test set will start after end_train_time. Also, if you
omit end_test_time, the test set will include all data that arrived after 1st February
2024.

Sometimes, you need a more sophisticated way to split your training data than a ran‐
dom or time-series split. For example, when predicting credit card fraud, you can
train a binary classifier, but the positive class (fraud) is massively underrepresented
compared to the negative class (no-fraud). The imbalance ratio could be 1000s to 1 or
higher. There is a high risk when you split your data into training and test sets that
the ratio of positive and negative classes will not be the same, which would result in
poor evaluation of model performance as the distribution of labels would not be the
same in training and test sets.

In this case, and, in general, if you have an imbalanced dataset, you should use a
stratified split. For this, you should read your training data as a single DataFrame,
and then implement the stratified split yourself, using an appropriate library, such as
scikit-learn, if needed:

training_data = fv.training_data()
# apply custom splits into training and test/validation sets

Supervised learning does not work well when the class distribution
is skewed. For binary classifiers, you should upsample or down‐
sample one of the classes to improve balance between the classes.
In Python, the imbalance library is widely used for up/down sam‐
pling. If imbalance is too high, you may need to consider an alter‐
native technique, such as anomaly detection with unsupervised
learning instead of a binary classifier.

Reproducible Training Data
When you read training data as DataFrames or create training data as files, Hops‐
works stores metadata about the training data created, including the feature view
used, any filters used when creating training data, the training dataset ID, any ran‐
dom number seed, and the commit-ids for the feature groups that the training data
was read from. This way, you can delete the training data, and Hopsworks can still
reproduce that training data exactly using only the training dataset id:

X_train, X_test, y_train, y_test =   fv.get_train_test_split(train-
ing_data_id=111)

Sometimes, you will need to delete training datasets due to storage costs or for com‐
pliance reasons (data retention policies). In these cases, the ability to accurately recre‐
ate training data is important.
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Data science has aspired to be more science than engineering, with
an emphasis on reproducibility and replicability as they are corner‐
stones of the scientific method. This has led to the growth in popu‐
larity of experiment tracking platforms that store hyperparameters
from training runs, enabling models to be reproduced using
experiment tracking metadata. Reproducible training data has
received comparatively less attention, but is now possible with fea‐
ture stores, and should grow in importance with the coming regu‐
lation of AI.

Batch Inference Data
You can read batches of inference data from the offline store with a feature view. A
popular use case in batch inference pipelines is to read all new data that has arrived
since the last time the batch inference pipeline ran:

last_run_timestamp = "2024-05-10 00:01"
fv = fs.get_feature_view(...)
fv.init_batch_scoring(training_data_id=1)
df = fv.get_batch_data(start_timestamp=last_run_timestamp)
df["prediction"] = model.predict(df) 

Here we call init_batch_inference on the feature view to tell it which training dataset
ID to use if it has to compute model-dependent transformations. Then we read a
Pandas DataFrame, df, containing the transformed input features, read from the fea‐
ture store. Finally, we make our predictions with the model on df (assuming the
model can take a Pandas DataFrame as its input, which is possible for XGBoost and
Scikit-Learn models). You can also log predictions and the feature values using
fv.log(df).

Sometimes, you need more flexibility when reading batch inference data. For exam‐
ple, imagine if you want to read the latest feature data for all entities with your feature
view (such as the latest transactions and fraud features for all credit cards). For this,
you can use a spine group. A spine group contains rows of serving keys, for reading
your features for your feature view, along with a timestamp value for every serving
key. It is called a spine as it is the structure around which the training data or batch
inference data is built. Spine groups are not used in online inference and a spine
group has to be the label feature group in a feature view. You can define a spine group
as follows:

trans_spine = fs.get_or_create_spine_group(
    name="cc_trans_spine_fg",
    …
    dataframe=trans_df
)

Notice that you have to include a DataFrame, trans_df, to provide the schema for the
feature group. A spine group does not materialize any data to the feature store itself,
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and its data always needs to be provided when retrieving features for training or
batch inference. You can think of it as a temporary feature group, to be replaced by a
DataFrame when data is read from it. When you want to create training data with a
feature view that contains a spine group as its label feature group, you can do so as
follows:

df = # (serving keys, timestamp for label values)
X_train, X_test, y_train, y_test = 
feature_view.train_test_split(0.2, spine=df)

Similarly for batch inference, you can read inference data as follows:

input_df = # (serving keys, timestamp for feature values)
output_df = feature_view.get_batch_data(spine=input_df)
predictions = model.predict(output_df) 

If you can avoid spine groups, you should, as they add complexity and externalize
much of the work for building training datasets and batch inference data to clients.

Online Inference
Feature views are also used to retrieve rows of features from the online store at low
latency. In our fraud example, the get_feature_vector() method call retrieves a row of
precomputed features for a given credit card number (serving key):

feature_vector = feature_view.get_feature_vector(entry={"cc_num":
"1234", "merchant_id": 4321}, return_type = "pandas")

The result, the feature vector, is returned as a Pandas DataFrame, but you can also
read a numpy array or list type (default). There is also a version of this method call
that retrieves many rows called get_feature_vectors, where the entry parameter is a list
of serving keys.

The transformation functions, introduced earlier, can also be used to define on-
demand transformation functions. For example, the on-demand

from earlier feature cards_to_card_expiry can be computed as follows:

@udf(float)
def days_to_card_expiry(expiry_date):
    return datetime.today().date - expiry_date

You call this transformation function in an online inference pipeline as follows:

feature_vector = feature_view.get_feature_vector(entry={"cc_num":
"1234", "merchant_id": 4321}, return_type = "pandas")
cc_expiry = days_to_card_expiry(feature_vector["expiry_date"])
feature_vector = feature_vector.drop(columns=["expiry_date"])
prediction = model.predict(feature_vector)
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Note that the expiry_date parameter is retrieved using the feature view as an inference
helper column. You need to drop any inference helper columns before you call
model.predict().

In Chapter 11, we will bring all online inference steps together, including also model-
dependent transformations, logging the prediction/feature values, and monitoring
the features/models.

Faster Queries for Feature Data
We finish this chapter by looking at how to read feature data using filters. Applying
filters can lead to huge performance improvements when reading a subset of feature
data. For example, in the offline store, when data volumes are large, reading large
amounts of data into (Pandas or PySpark) DataFrames and then dropping the col‐
umns and rows you do not need incurs huge overhead. It is going to be either very
slow or may not work due to out-of-memory errors. The two main techniques for
reducing the amount of data read in a query are:

projection pushdown
Read only the columns you request

pushdown filters
Read only the data for the filter value(s) you provide. This includes both partition
pruning and predicate pushdown.

When you read a subset of the features in a feature group and only the data for those
features is returned to the client, it is known as projection pushdown. Hopsworks sup‐
ports projection pushdown out of the box - you don’t need to do anything to get the
benefits. When you define a feature view that only uses a subset of the features in a
feature group, reads using that feature view will read with projection pushdown. Both
Hopsworks’ online feature store, RonDB, and its offline store (lakehouse tables) sup‐
port projection pushdown. Online stores without projection pushdown, for example
Redis, require the client to read all of the columns in feature groups and only in the
client will it filter out the data it doesn’t need. Projection pushdown is particularly
needed in cases such as when you have a wide feature group with many columns, and
a subset of those columns are used in many different models. When you query data
from a feature view (e.g., read training data or batch inference data), you can provide
a filter such as

X_features, y_labels = 
     fv.filter(Feature("event_time")=="2024-01-10").training_data()

You can also read data directly from feature groups using filters:

df = fg.filter(Feature("event_time") > "2024-01-10").read()
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In the case, where you have a feature view that contains features from multiple feature
groups, you can chain filters that can all potentially be pushed down to the backing
feature groups. For example, assume we have a feature view that contains features
from two feature groups. The first feature group is partitioned by the event_time col‐
umn and the second one is partitioned by the country column. In this case, we chain
filter function calls. In the following example, we show an alternative way to identify
a feature (that doesn’t require the feature group object):

df = fv.filter(Feature("event_time")=="2024-01-10")
  .filter(Feature("country") == "Ireland")
  .training_data()
 

We already covered partitioning earlier, but we didn’t cover how to write filtered
queries for multi-column partition keys. For example, if you define 2 columns as your
partition key, the order of the columns is important. If you have ['event_time',
'country'] as the partition key, a query that filters on a given event_time, it will only
read the files that contain rows that contain the date value in your filter. However, it
will return data for all the countries in your feature group. To read only feature data
for a given event_time and country, you call:

df = fg.filter( (Feature("event_time")=="2024-01-10") |
     (Feature("country")=="Ireland") 
    ).read()

If, however, you query with a filter on only the country name, the partition key filter
will not be pushed down. The Hopsworks client will then attempt to execute the filter
as a pushdown predicate. The Hopsworks Feature Query Service performs data skip‐
ping at both the Parquet file level as well as the row group level. It leverages column
level statistics collected by the backing lakehouse table (for example, min/max col‐
umn values for a Parquet file) to skip files when reading data and zone maps in the
Parquet file’s metadata to enable the reader to only fetch row groups with parameter
values provided in the query. The Hopsworks Feature Query Service uses Apache
Arrow both as a query processing format and an over-the-network format, improving
performance significantly compared to feature stores that use JDBC/ODBC servers
for querying data.
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The role of an Index is to help skip as much data as possible when
querying data. Lakehouse tables store their data as Parquet files.
Lakehouse tables can have thousands of Parquet files. A well
designed feature pipeline will ensure that Parquet file sizes are uni‐
form and of reasonable size (tens of MBs to a few GBs). Too many
small files hurts query performance as there are too many files to
process. Too few files or skewed file sizes results in inefficient data
skipping during query execution. Hopsworks has table services that
can run periodically to dynamically adjust file sizes and garbage
collect unused files.

Summary
This chapter explores the Hopsworks Feature Store, emphasizing API calls to create
and use both feature groups and feature views. We started by looking at how to
implement access control for feature data using Hopsworks projects and RBAC. We
looked at the internals of the feature groups: the offline store (a lakehouse), the online
store (RonDB), and vector index(es). We looked at how to create feature views and
use them to create both training data and inference data. Finally, we gave some advice
on how to improve the performance of feature store queries using filters.
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CHAPTER 6

Model-Independent Transformations

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 6th chapter of the final book. The GitHub repo can be found at
https://github.com/featurestorebook/mlfs-book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

Our focus now switches to how to write the data transformation logic for feature
pipelines. As introduced in Chapter 2, feature pipelines are the programs that execute
model-independent data transformations to produce reusable features that are stored
in the feature store. That is, the feature data created could be used by potentially
many different models - not just the first model you are developing the feature pipe‐
line for. Feature reuse results in higher quality features through increased usage and
testing, reduced storage costs, reduced feature development and operational costs.
And remember, the lowest cost feature pipeline is the one you don’t have to create.

Examples of model-independent transformations we will cover in this include the
“EVAC” transformations:

• feature Extraction (lagged features, binning, and chunking for LLMs),
• data Validation (with Great Expectations),
• Aggregations (counts and sums for time windows), and
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• Compression (vector embeddings).

We will also look at how we can compose transformations in feature pipelines to
improve the modularity, testability, and performance of your feature pipelines. How‐
ever, we will start by setting up our development process - how to organize the source
code into packages, and what technologies we can use to implement our transforma‐
tions in feature pipelines.

Source Code Organization
We will use the source code for our credit card fraud project as a template for how to
organize source code such that it follows production best-practices for developing
ML pipelines. We need to move beyond just writing notebooks if we are to build pro‐
duction quality pipelines, and that means following software engineering practices
such as test-driven development with continuous integration and continuous devel‐
opment (CI/CD). If you make changes to your source code, tests will give you
increased confidence that the changes you made do not break either a pipeline or a
client that is dependent on an artifact created by your pipeline - whether that artifact
is a feature, a training dataset, a model, or a prediction. By automating the execution
of the tests, they will not slow down your iteration speed when developing. If you
have never written a unit test before, don’t worry - LLMs (such as ChatGPT) can help
you fix syntactic issues in the source code for your tests, and sometimes even help
you identify what to test.

We use a directory structure that organizes all the source code we need to build, test,
and run our entire credit card fraud prediction system, see Figure 6-1.
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Figure 6-1. For an AI system built with Python, we organize our source code for produc‐
tion by placing the different programs, functions, and tests into different directories, sep‐
arating production code in the project from EDA in notebooks and helper scripts.

The source code for the different feature, training, and inference pipelines is stored in
their own respective directories (feature-pipelines, training-pipelines, inference-
pipelines). For easier maintenance, we will store the tests in separate files in a dedica‐
ted directory outside of our pipeline programs, as this separates the code for our
pipelines from the code for testing. We will have two different types of tests - feature-
tests, unit tests for computing features, and pipeline-tests, end-to-end tests for pipe‐
lines. Similarly, it is a good idea to separate the functions used to compute features
from the programs that implement the feature/training/inference pipelines. We place
feature functions in the features directory. If you follow this code structure, you will
be able to iterate quickly, and not have to later refactor your code for production.

We call this type of project structure a monorepo, as the source code for our entire AI
system is in a single source code (git) repository. The advantage of a monorepo over
separate git repositories for the feature/training/inference pipelines is that we don’t
have to create and manage installable Python libraries for any shared code between
the ML pipelines. The monorepo also does not hinder creating separate production
quality deployments for the feature, training, and inference pipelines. For example,
each ML pipeline can have its own requirements.txt file in its own directory that will
be used to build an executable container image for the ML pipeline.
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Notice that notebooks is a separate directory. It is not part of the production code in
the project. It is there to create insights into creating production code - to perform
EDA to understand the data and the prediction problem, and to communicate those
insights with other stakeholders. Similarly, the scripts directory is not part of the pro‐
duction code, and is there to store utility shell scripts for running tests or pipelines
during development.

In contrast, Python library dependencies are part of production and included in the
project directory as at least one global requirements.txt file (for all ML pipelines).
Most Python developers have opened the gates of pip dependency hell. For example, I
had problems with Pandas 2.x together with Great Expectations 0.16.x. Pandas
depends on version 3.1+ of the jinja2 library, while Great Expectations required an
earlier version of jinja2, but jinja2 didn’t maintain backwards compatibility. For a
while, I couldn’t use Pandas 2.x with Great Expectations, until Great Expectations
upgraded its jinja2 dependency to version 3.1+.

In our credit card fraud project, I included different versioned Python library depen‐
dencies for each of our three ML pipelines. That is, the feature, training, and infer‐
ence pipeline directories each have their own requirements.txt file. Within each
requirements.txt, I pinned the versions to ensure the builds are reproducible by you. If
I didn’t pin the versions, it is possible an upgrade to a dependency would cause your
program to fail. That is unacceptable, so we pin our versions. You can install the
Python dependencies in your virtual environment by calling:

pip install -r requirements.txt

If, instead of pip and a requirements.txt file, you prefer to use a more feature-rich
dependency management library, such as Poetry, then please do so. Poetry is great for
large projects and manages the Python virtual environment lifecycle using a pypro‐
ject.toml file. We will use pip and requirements.txt files as they have a lower barrier to
entry and better integration with cloud platforms that build container images from
requirements.txt files.

Feature Pipelines
Feature pipelines read data from some data sources, create features from the data
read, and write their output feature data to the feature store. Before we dive deep into
feature engineering, we will first look at a number of popular open-source data trans‐
formation engines, introduced in Chapter 2. Given a group of features you want to
compute together (and write to a feature group), you should understand the trade-
offs between using different available engines, based on the expected data volume and
the freshness requirements for the features. Most compute engines for feature engi‐
neering fall into one of the following computing paradigms:

• Stream processing for streaming feature pipelines (Python, Java, or SQL)
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• DataFrames for batch feature pipelines (Python)
• Data warehouses for batch feature pipelines (SQL)

There are also other specialist compute engines for feature engineering, including
some that leverage GPUs, but due to space considerations we restrict ourselves to
widely adopted open-source engines: Pandas, Polars, Apache Spark, Apache Flink,
and Feldera (a stream processing engine using SQL). In Figure 6-2, you can see how
to implement data transformations in these frameworks, organized by whether they:

• scale to process data that is too big to be processed by a single server (PySpark,
Apache Flink),

• are stream processing frameworks (Feldera, Apache Flink),
• support real-time computation of feature data in prediction requests (Python

UDFs),
• are batch data transformations (Pandas, Polars, DuckDB, and PySpark).

Figure 6-2. Data transformations in different DataFrame and stream processing frame‐
works have different latency and scalability properties. For each feature pipeline, you
should select the best framework, given the scale and latency requirements for the fea‐
tures it creates.
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For stream processing, Apache Flink and Spark Streaming are widely used as dis‐
tributed, scalable frameworks. Both, however, have steep learning curves and high
operational overhead. Feldera is another single-machine stream processing engine
with support for incremental computation with SQL, see Chapter 9.

For batch processing with DataFrames, Pandas, Polars, and PySpark are the main
frameworks that we will work with in this chapter. Batch processing with SQL can be
performed in data warehouses, such as Snowflake, BigQuery, Databricks Photon, or
Redshift, or on single-host SQL engines, such as DuckDB. DBT has become a popular
framework for orchestrating feature engineering pipelines as a series of SQL com‐
mands. Table 6-1 provides a guide as to when you should choose one engine over
another.

Table 6-1. Example AI systems and the candidate frameworks that are best suited for
computing features, based on whether the AI systems require fresh features (stream
processing) or not (batch processing), and whether the feature pipelines will process big data
(distributed compute engines) or not (single server compute engines).

Data Volume Feature Freshness Candidate Frameworks Example Feature Pipelines for AI Systems
Large 1-3 secs Flink (Java) Clickstreams for TikTok Scale Recommenders
Small-
Medium

1-3 secs Feldera (SQL) Real-Time Logistics (delivery, drivers), smaller
clickstream processing, cybersecurity events.

Small 1-3 secs Python: Pathway, Quix,
Bytewax

Streaming ML systems (Intrusion detection, Industry 4.0,
Edge),

Large Mins to hrs PySpark or dbt/SQL Personalized marketing campaigns and segmentation,
batch fraud, customer churn, credit scoring, demand
forecasting

Large
Unstructured

Mins to hrs PySpark Image augmentation, Text processing (e.g., chunking),
video pre-processing (PySpark)

Small-
Medium

Mins to hrs Pandas, Polars, DuckDB Same as previous for smaller data volumes, data
fetching from APIs,

Small- Large Mins to hrs Optionally with GPUs:
Pandas, Polars, PySpark

Vector embedding text chunking pipelines for RAG,
Video pre-processing

In general, you should choose stream processing if you are building a real-time AI
system that needs fresh precomputed features. If feature freshness is not important,
you should probably write a batch feature pipeline as they have lower operational
costs. You should prefer DataFrame compute engines (Pandas/Polars/PySpark) over
SQL when:

• you need to fetch data from APIs,
• extensive data cleaning is required,
• you need to transform unstructured data (images, video, text),
• you need to use feature engineering libraries that are only available in Python,
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• you need to write transformations with custom logic.

Feature engineering with DataFrames can be scaled up on a single machine by
switching from Pandas to Polars, which makes better use of available memory and
CPUs. When data volumes are too large for a single machine, you can use PySpark
that can be scaled out over many workers to TB or PB-sized workloads.

We will now briefly cover SQL for feature engineering. SQL should be used over
DataFrames when you have a batch feature pipeline, all of the source data is in the
data warehouse or lakehouse, and your feature engineering can be implemented in
SQL. SQL-based feature engineering is declarative, leveraging the power of relational
operations and the scale of data warehouses or query engines on top of lakehouse
tables.

For example, in Hopsworks, SQL-based transformations for a batch data source can
be defined in an external feature group and the SQL that performs the transforma‐
tions and returns the transformed data is run when you read data from the feature
group (typically in a training or batch inference pipeline). In this case, there is no fea‐
ture pipeline to schedule as features are computed when they are read.

SparkSQL transformations such as

df.createOrReplaceTempView("data")
df_features = spark.sql("SELECT *, (col1 + col2) AS feature_sum FROM data")

Data Transformations for DataFrames
Feature engineering with both DataFrames and SQL tables involves performing row-
wise and column-wise transformations on the data. I find one useful way to under‐
stand each data transformation is how it changes the rows and columns in your
DataFrame(s) or SQL table(s).

You need to know what the result of the data transformations will be - will it add or
remove columns, reduce the number of rows, or add more rows? Figure 6-3 shows
the different classes of transformations that can be performed on tabular data. In the
discussion below, we will restrict ourselves to data transformations on DataFrames.
The code snippets are in Polars, as most of the batch transformations in our credit
card fraud detection system are written in Polars. Similar to Pandas, Polars is a Data‐
Frame engine that runs on a single machine, but it scales to handle much larger data
volumes thanks to better memory management and multi-core support.
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Figure 6-3. Data transformations produce output DataFrames that often do not match
the shape of the input DataFrame(s). Some transformations add rows and/or columns,
some keep the same number of rows, and some reduce the number of rows and/or col‐
umns.

We can classify DataFrame transformations into the following cardinalities:

• row-size preserving transformation where you add a new column to an existing
DataFrame without changing the number of rows. Feature extraction is a typical
example of one such data transformation.

• row-/column-size reducing transformation where the input DataFrame has more
rows than the output DataFrame. Examples of such transformations include
group-by-aggregations, filtering, or data compression (vector embeddings, PCA),

• row-/column-size increasing transformation where the input DataFrame has less
rows than the output DataFrame. A common example is feature extraction that
involves exploding JSON objects, lists, or dicts stored in columns in DataFrames.
Cross-joins also belong here, too. As do user-defined table functions (in
PySpark).

• Join transformations involve merging together two input DataFrames to produce
a single DataFrame (with more columns than either of the input DataFrames).
Joins are needed when you have data from different sources and you want to
compute features using data from both sources. Joins are sometimes needed to
build the final DataFrame that is written to a feature group.
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Row-Size Preserving Transformations
Here is an example of a row-size preserving transformation, implemented as a Pandas
UDF, that identifies rows that include outliers by setting a boolean value for is_outlier
in a new column in the DataFrame:

def detect_outliers(value_series: pd.Series) -> pd.Series:
    """Add a column that indicates whether the row is an outlier"""
    mean = value_series.mean()
    std_dev = value_series.std()
    z_scores = (value_series - mean) / std_dev
    return np.abs(z_scores) > 3
 
df = df.withColumn("is_outlier", detect_outliers(df["value"]))

We may compose this transformation with row-reducing transformation that
removes the rows that are considered outliers:

def remove_outliers(df: pd.DataFrame) -> pd.DataFrame:
    """Remove the rows in the DataFrame where is_outlier is True"""
    return df[df["is_outlier"] == False)]
df_filtered = remove_outliers(df)

Other examples of row-size preserving data transformations include:

• applying a UDF as a lambda function in Polars (or an apply in Pandas, or a Pan‐
das UDF in PySpark). This code (that stores the squared value of a column in
new_col) applies the lambda function to col1 using the map function:

df.with_columns(df["col1"].map(lambda x: x * 2).alias("new_col"))

• a rolling window expression that computes the mean amount spent on a credit
card for the previous 3 days:

df.with_columns((col("amount").rolling_mean(window_size=3)
                .over("cc_num")).alias("rolling_avg"))

• conditional transformations (when, then, otherwise, select). Here, if col is 0, the
set new_col to positive, else set it to non_positive:

df.with_columns((pl.when(df["col"]==0).then("positive")
    .otherwise("non_positive")).alias("new_col"))

• temporal transformations that capture time-related information about the data.
Here, we compute the number of days since the bank’s credit rating was last
changed:

df.with_columns((pl.lit(datetime.now()) - pl.col("last_modi-
fied")).alias("days_since_bank_cr_changed")
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• sorting and ranking. This code computes in rank_col the rank of each value in
col.

df.with_columns(df["col"].rank().alias("rank_col"))

• mathematical transformations. Here, we store the sum of col1 and col2 in
sum_col:

df.with_columns((df["col1"] + df["col2"]).alias("sum_col"))

• String transformations. This transformation uppercases the string in name and
stores it in uppercase_name:

df.with_columns(df["name"].str.to_uppercase().alias("uppercase_name"))

• Lag and lead. This code stores yesterday’s pm25 value in lagged_pm25:

df.with_columns(df["pm25"].shift(1).alias("lagged_pm25"))

Row- and Column-Size Reducing Transformations
Aggregations are an example of a well-known data transformation that reduces the
number of rows from the input DataFrame (or table). Aggregations summarize data
over a column and optionally an additional time window (a time range of data), cap‐
turing trends or temporal patterns. Aggregations are useful in AI systems with sparse
data and temporal patterns, such as fraud detection, recommendation engines, and
predictive maintenance applications.

Aggregations are functions that summarize a window of data. The data could include
all of the input data or a time window, a period over which the aggregation is per‐
formed. Common aggregation functions include:

Count
Number of events.

Sum
Total value (e.g., total transaction amount).

Mean/Median
Average value.

Max/Min
Extreme values.

Standard Deviation/Variance
Measure of variability.
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Percentiles
Specific thresholds, such as the 90th percentile.

Aggregations are computed for entities, for example:

• Per credit card
• Per customer
• Per merchant/bank
• Per product/item

In SQL and PySpark you use group by and a window. Polars supports grouping by
time windows through the groupby_rolling and groupby_dynamic methods and then
applying aggregations. Pandas supports time-based grouping through resample and
rolling, which can be combined with aggregation functions. Here is example aggrega‐
tion in Polars without a time window that handles missing data filling missing values
with the forward fill strategy (replace null values with the last valid (non-null) value
that appeared earlier in the data):

filled_df = (
    df.groupby("cc_num", maintain_order=True)
    .agg([
        pl.col("event_time"),  # Keep transaction_time
        pl.col("amount").fill_null(strategy="forward")
        .sum().alias("total_amount"), 
    ])
)

In the previous code snippet, the output DataFrame, filled_df, includes the event_time
column from df and adds the new total_amount column containing the result of the
aggregation. All other columns from df were not retained, as aggregations typically
reduce the number of columns. For example, if you are computing the sum of the
transactions for a credit card number, it is not meaningful to retain the category col‐
umn in that transformation. If you want to compute an aggregate for the category
column, you perform a separate transformation on that column.

Aggregations support different types of time windows, some of which are row-size
reducing and some of which are not. Rolling window aggregations compute an out‐
put for every row in source DataFrame, and are therefore not row-rize reducing. In
contrast, tumbling windows compute an output for all events in a window length, so
they typically reduce the number of rows. For example, if your window length is 1
week and there are, on average, 20 transactions per week, you will reduce the number
of rows, on average, by a factor of 20.

Sometimes aggregations require composing transformations. For example, if we want
to compute the following: “find the maximum amount for each cc_num that has 2 or
more transactions from the same category”. Here, we need to group by cc_num, then
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we have to remove those transactions that have only one entry for a given category,
then for each remaining category (with >1 transaction), find the maximum amount.
This might seem like a complex example, but it is not uncommon when you need to
find specific signals in the data that are predictive for your problem at hand. Polars
lets us elegantly and efficiently compose group-by aggregations and expressions.

df3 = df.group_by("cc_num").agg(
    pl.col("amount").filter(pl.col("category").count() > 1).max()
)

Vector embeddings are another data transformation that compresses input data into a
smaller number of rows and columns. You create a vector embedding from some
high dimensional input data (rows and columns) by passing it through an embedding
model that then outputs a vector. The vector is a fixed sized array (its length is known
as its dimension) containing (normally 32-bit) floating point numbers. The embed‐
ding model is a deep learning model, so if you are transforming a large volume of
data into vector embeddings, you may be able to speed it up considerably by per‐
forming the data transformations on GPUs rather than CPUs. In this example code,
we encode the explanation string for a fraudulent credit card transaction with the
SentenceTransformer embedding model:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(df["explanation"].to_list())
df = df.with_columns(pl.Series("embedding_explanation", embeddings))

If you write this vector embedding to a vector database (or a feature group in Hops‐
works), you can then search for records with similar explanation strings using k-
nearest neighbor (kNN) search. KNN search is a probabilistic algorithm that returns
k records containing vector embeddings that are semantically close to the provided
vector embedding. The size of k can range from a few to a few hundred records.

Row-/Column-Size Increasing Transformations
It is becoming more common to store JSON objects in columns in tables. In order to
create features from values in the JSON object, you may need to first extract the val‐
ues in the JSON object as new columns and/or new rows. You can do this by explod‐
ing the column containing the JSON object. In Polars, this involves first casting the
column to a struct, then calling unnest to explode the struct into separate columns:

df = pl.DataFrame({
    "json_col": [
        {"name": "Alice", "age": 25, "city": "Palo Alto"}, 
        {"name": "Bob", "age": 30, "city": "Dublin"}, …
    ]})
df = df.with_columns(pl.struct("json_col").alias("json_struct"))
df_exploded = df.unnest("json_struct")
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If you have json objects in a column, in Polars, you can define them first as a struct
and then unnest the column to explode details into separate columns. At the end,
df_exploded contains the columns ["name”, “age”, “city"].

In PySpark, user-defined table functions (UDTFs) are functions that transform a sin‐
gle input row into multiple output rows. In contrast, UDFs work on a row-to-row
basis. UDTFs can, for example, explode a JSON structure in a column to multiple
rows based on deeply nested fields. UDTFs are not available in Polars or Pandas.
UDTF execution is parallelized on Spark, but they are not inherently vectorized like
Pandas UDFs or Arrow-based functions. This means they introduce overhead due to
serialization, deserialization, and Python-JVM boundary crossing. As of Spark 3.x,
PySpark doesn’t support custom User-Defined Table Functions (UDTFs). Custom
UDTFs can be written in Java/Scala Spark.

Exploding JSON objects is not the only row-size increasing data transformation.
Imagine we want to create a feature for the total spending of each customer per trans‐
action category. However, transactions are organized by cc_num (entity ID), so we
need to pivot the DataFrame to transform columns into rows and compute a
spend_category column:

pivot = (
    df.groupby(["cc_num", "category"])  
    .agg(pl.col("amount").sum()) 
    .pivot(values="amount", index="cc_num", columns="category")
    .fill_null(0)  # Replace nulls with 0
)
pivot = pivot.rename({col: f"spend_{col}" for col in pivot.columns if col != 
"cc_num"})

Similarly, you also unpivot columns into rows using melt:
dv_unpivot = df.melt(id_vars=["cc_num"], value_vars=["category"])

Join Transformations
A common requirement when selecting features for a model is to include features
that “belong” to different entities. For example, you could have features in different
feature groups with different entity IDs (e.g., cc_num and account_id), but you would
like to use features from both feature groups in your model. In this case, we often
need to join two or more DataFrames together using a common join key.

The following is an example of joining two DataFrames together in Polars. Note that
Pandas uses the method merge instead of join for this operation (PySpark uses join).

merged_df = transaction_df.join(account_df, on="cc_num", how="left")

Here, we perform an inner join, which will take every row in transaction_df and look
for a matching cc_num in account_df. It will skip rows in transaction_df that do not
have a matching cc_num in account_df. What if there is no account information for a
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transaction, but we still would like to include the transaction (as we can infer reason‐
able values for the account during training or inference)? In this case, we can change
the policy to a left (outer) join, with how="left". Inner and left joins are the most
widely used joins for feature engineering. Note that an left outer join will be a row-size
preserving transformation for the left-hand DataFrame in the join operation, but an
inner join will either be a row-size preserving or row-size reducing transformation,
depending on whether there all matching rows in the right-hand DataFrame for all
rows in the left-hand DataFrame (preserving) or not (reducing).

DAG of Feature Functions
In Chapter 2, we argued that transformation logic should be factored into feature
functions in order to improve code modularity and make transformations unit test‐
able. A feature pipeline is a series of well defined steps that transform source data into
features that are written in the feature store:

1. read data from one or more data sources in ti one or more DataFrames
2. apply feature functions to transform data into features and to join features

together
3. write DataFrame containing featurized data to the corresponding feature group.

The feature pipeline should be parameterized by its data input so that you can run the
feature pipeline either with historical data or with new incremental data. Assuming
your data source supports data skipping, you should only select the columns you
need and filter out the rows you don’t need. If you work with small data, you may get
away with reading all the data from your data source into a DataFrame, and then
dropping the extra columns and filtering out the data you don’t need. However, with
large data volumes, this is not possible and you need to push down your selections
and filters to the data source.

Once you have read your source data into DataFrame(s), the feature pipeline organi‐
zes the feature functions in a dataflow graph. A dataflow graph is a directed acyclic
graph (DAG) that has inputs (data sources), nodes (DataFrames), edges (feature func‐
tions), and outputs (feature groups). Figure 6-4 shows three different feature func‐
tions g(), h(), and j(), where df is read from the data source, g() is applied to df to
produce df1. Then in parallel, h() and j() are applied to (potentially different col‐
umns) in df1 in parallel, producing dfM and dfN, respectively. (Note, PySpark and
Polars support parallel executions, while Pandas does not).
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Figure 6-4. A feature pipeline reads new data or backfill data into a DataFrame (df),
and then applies a directed acyclic graph of data transformations on df using feature
functions f, g, h, and j. The output of each feature function g, h, and j is a DataFrame
that is written to feature group 1, M, and N, respectively.

The graph structure inherently represents dependencies between the transformations,
as one featurized DataFrame can be the input to another. When the output of one
transformation is used as the input to another transformation, we say that the data
transformations have been composed, as presented in Chapter 4. Both intermediate
and leaf nodes in the DAG can write DataFrames to feature groups. Here, df1 is writ‐
ten to feature group 1, dfM to feature group M, and dfN to feature group N.

Lazy DataFrames
Pandas supports eager evaluation of operations on DataFrames. Each command is
processed right away. In a Jupyter notebook, you see the result of the operation
directly after it has been executed. This is a powerful approach for learning to write
data transformations in Pandas. In contrast, DataFrame frameworks that support lazy
evaluation, such as Polars and PySpark, can wait across multiple steps before the
commands are executed. Waiting provides the possibility to optimize the execution of
the steps. But how long do you wait before executing? Lazy DataFrames are like a
quantum state, where the act of observing gives you the result. With Lazy Data‐
Frames, an “action” (reading the contents of a DataFrame or writing it to external
storage) triggers the execution of the transformations on it. While eager evaluation is
great for beginners, it is not great for performance. As data volumes inexorably
increase, you should learn to work with Lazy DataFrames. Both Polars and PySpark
are built around Lazy DataFrames.

The following code snippet in Polars creates a Lazy DataFrame from a CSV file, then
computes the mean value of the amount column, and then computes the devia‐
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tion_from_mean by subtracting the mean from the amount. This is a useful feature in
credit card fraud. However, all of these steps are only executed when the code reaches
the last line - an action, collect(), to read its contents:

# Lazy loading with pl.scan_csv
lazy_df = pl.scan_csv("transactions.csv")  
 
# Compute the mean, then create a new column for deviation from mean
lazy_df = lazy_df.with_columns([
    (pl.col("amount") - pl.col("amount").mean()).alias("deviation_from_mean")
])
 
# Trigger execution and collect the result
result = lazy_df.collect()

Vectorized Compute, Multi-Core, and Arrow
For performance reasons, we avoid writing data transformation code using Data‐
Frames and native Python language features such as for/while loops, list comprehen‐
sions, and map/reduce functions. The code examples we have introduced thus far are
based on idioms such as with_columns(...) and Pandas UDFs. DataFrame transforma‐
tions that follow these idioms are executed by a vectorized compute engine and not
executed in native Python code. They are orders of magnitude faster than native
Python code for two main reasons. Firstly, Python’s standard execution model is
interpreted bytecode, lacking native vectorization. Secondly, Python programs are
constrained by the Global Interpreter Lock, which prevents efficient scalability on
multiple CPU cores.

A vectorized compute engine performs operations on large arrays or data structures
by applying single instructions to multiple data points simultaneously (SIMD). These
operations can also be parallelized across multiple CPU cores to further improve scal‐
ability. Pandas, Polars, and PySpark all have vectorized compute engines. Polars and
PySpark both have good multi-core support, while Pandas (up to version 2) does not.

You should write your data transformations so that they are executed in the vector‐
ized compute engine rather than run in Python as interpreted bytecode, see Figure
6-5. A trivial example would be a for-loop to process a Pandas DataFrame. Please,
don’t do this. A more common performance bottleneck in Pandas is a Python UDF
that you apply to a DataFrame. This will involve the data being copied from the back‐
ing store (Arrow supported in Pandas v2) to Python, where the data will be the UDF
is applied, and then back to Arrow.
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Figure 6-5. When you define data transformations in Python, it is important to use
transformations that have vectorized implementations. Pandas supports both NumPy
and more recently Arrow transformations (shown). Polars has a rust engine, while
DuckDB has a C++ engine.

For example, the following Python UDF, executed with apply in Pandas, takes 7.35
seconds on my laptop (Windows Subsystem for Linux, 32GB RAM, 8 CPUs).

num_rows = 10_000_000 
df = pd.DataFrame({ 'value': np.random.rand(num_rows) * 100})
 
def python_udf(val: float) -> float:
    return val * 1.1 + math.sin(val)
 
df['apply_result'] = df['value'].apply(python_udf)

If I rewrite the same UDF as a Pandas UDF, using NumPy as a vectorized compute
engine, it completes in only 0.28 seconds:

import numpy as np
 
def pandas_udf(series: pd.Series) -> pd.Series:
    return series * 1.1 + np.sin(series)
 
df['pandas_udf_result'] = pandas_udf(df['value'])

I can also rewrite the same code as an expression in Polars, and it has roughly the
same execution time as the vectorized Pandas UDF:

df_polars_expr = df.with_columns(
    (pl.col("value") * 1.1 + pl.col("value").sin()).alias("result")
)
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In this case, Polars is not faster than Pandas, as there is no parallelization over multi‐
ple CPUs. Polars, however, has superior memory management for larger data vol‐
umes. I can run this Polars code with 500m rows, but the Pandas code crashes at that
scale.

We can also rewrite the above code as a PySpark program. PySpark supports lazy
evaluation, withColumn expressions, and Pandas UDFs:

@pandas_udf("double")
def pandas_udf(value: pd.Series) -> pd.Series:
    return value * 1.1 + np.sin(value)
 
df["result"] = df.withColumn("pandas_udf_result", pandas_udf(col("value"))) 

The above code uses Arrow to efficiently transfer data between PySpark’s Java Vir‐
tual Machine (JVM) and Python. We can also rewrite the previous code in PySpark as
a withColumn expression:

from pyspark.sql.functions import col, sin 
 
df = df.withColumn(
    "result", (col("value") * 1.1 + sin(col("value")))
)

This code uses PySpark’s SQL expression API and is performed natively in the Spark
engine, without the need to transfer data from the JVM to the Pandas UDF.

Lastly, we can re-write the above code in Python using DuckDB, an embedded SQL
engine that can outperform even Polars for some classes of data transformation:

import duckdb
con = duckdb.connect()
con.register("input_df", df)
 
result_df = con.execute("""
    SELECT 
        value, 
        value * 1.1 + SIN(value) AS result 
    FROM input_df
""").fetchdf() 

This returns result_df as a Pandas DataFrame and transfers data to and from Pandas
using Arrow.

Pandas, Polars, PySpark, and DuckDB all can natively transfer their data as Arrow
tables. So, you can, with zero cost, move DataFrames between Pandas, Polars, and
DuckDB by reading the source DataFrame as an ArrowTable and then creating a
DataFrame from that Arrow table in your target framework. This way you can write
feature pipelines that perform some data transformations in DuckDB, some in Pan‐
das, and some in Polars - without any overhead when moving DataFrames between
the different engines. PySpark, in contrast, is a distributed compute engine, where
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DataFrames are partitioned across workers. Converting a PySpark DataFrame to a
Pandas DataFrame requires first collecting the distributed PySpark DataFrame on the
driver node - a process that can potentially overload the driver resulting in an out-of-
memory error.

Arrow is a language independent in-memory columnar format that
is an efficient data interchange format between different program‐
ming languages and frameworks and supports dictionary compres‐
sion. Since Arrow data is already in a serialized format, it can be
directly sent over the network or shared between processes without
converting to or from other formats. For example, Arrow Flight is a
gRPC-based network protocol for transferring Arrow data between
systems. Arrow is also efficient for feature engineering tasks such
as computing aggregations on columns as it is an in-memory col‐
umnar format. PyArrow is a popular Python library for working
Arrow data.

In the following code snippet, we show how to write a feature pipeline that performs
processing steps in different compute engines, using Arrow to efficiently transfer data
between the engines. First, we first create a Pandas DataFrame pdf containing three
input columns: employee’s name, age, and salary. We then transform the employee’s
age from a number to a categorical variable (junior or senior) in Polars. Then we
transform their salary from a number to a categorical variable (junior, mid-level, or
senior) in DuckDB.

import polars as pl
import duckdb
import pyarrow as pa
 
pdf = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Charlie', 'David'],
    'age': [25, 30, 35, 40],
    'salary': [50000, 60000, 75000, 90000]
})
# Convert Pandas DataFrame to PyArrow Table (zero-copy)
arrow_table = pa.Table.from_pandas(pdf)
 
# Convert to Polars DataFrame (zero-copy)
pldf = pl.from_arrow(arrow_table)
 
pldf_transformed = pldf.with_columns([
    pl.when(pl.col('age') < 35)
    .then(pl.lit('Junior'))  # Use pl.lit() for string literals
    .otherwise(pl.lit('Senior')) 
    .alias('age_category')
])
print(pldf_transformed)
arrow_table_transformed = pldf_transformed.to_arrow()
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# Create in-memory DuckDB database and register Arrow Table
con = duckdb.connect(':memory:')
con.register('employee_table', arrow_table_transformed)
 
# Perform a transformation in DuckDB, returns Pandas DF
result_df = con.execute("""
    SELECT name, age_category, 
        CASE 
            WHEN salary < 60000 THEN 'Junior'
            WHEN salary BETWEEN 60000 AND 80000 THEN 'Mid-level'
            ELSE 'Senior'
        END as salary_band
    FROM employee_table
""").df()
con.close()
print(result_df)

We start by creating a Pandas DataFrame pdf containing our data and convert it to a
PyArrow table, arrow_table. We then create a Polars DataFrame pldf using
arrow_table, again without copying data and create a categorical feature by trans‐
forming age - we categorize people as either Junior or Senior. Then, we create a
DuckDB instance and register arrow_table_transformed, retrieved from the Polars
DataFrame without copying, as employee_table. Finally, we compute a categorical
variable salary_band using salary.

Data Types
When you write code in ML pipelines, you work with the corresponding Polars/
Pandas/PySpark/SQL data types. However, ML pipelines interoperate via the shared
feature store layer, and every feature store has its own set of supported data types.
One complication can arrive if you use a different framework in a feature pipeline
compared to the training/inference pipelines. For example, the feature pipeline could
run in PySpark, while the training pipeline uses Pandas to feed samples to the model.
However, PySparks supports a different set of data types compared to Pandas. The
feature store connects these two pipelines by storing data in its native data types, and
casting data to/from the framework’s data types.

In Figure 6-6, you can see how a feature pipeline written in PySpark writes a Data‐
Frame containing four columns with the native PySpark data types TimestampType,
DateType, StringType, and BinaryType.
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Figure 6-6. When you write typed data to the feature store (in a feature pipeline), the
training and inference pipelines should read the data with the same (or compatible) data
types. The offline and online feature groups store the data in their own native types.

Hopsworks stores them as Hive data types in its offline store, and when Pandas cli‐
ents in the training/inference pipelines read the features they read them as Pandas
data types datetime64[ns], datetime64[ns], object, and object.

One potential problem when writing ML pipelines is a mismatch between data types
in your ML pipeline and data types supported by your feature store. For example,
compute engines support a wider variety of data types than are supported by feature
stores. This can lead to a loss of precision. For example, an unsigned 8-bit int could
be cast to a signed 16-bit int. Or in Figure 6-7, a PySpark DateType is cast to an object
dtype in Pandas containing a datetime.date object.

The feature store is responsible for storing the feature data in its native data types and
ensuring that different combinations of frameworks can read and write data as
expected. It should ensure that irrespective of whether you use SQL/Pandas/Polars/
PySpark/Flink for the feature pipeline, the training and inference pipelines should be
able to read the feature data in supported DataFrame engines. There is also the added
complication that the feature store stores data in both offline tables and online tables,
each of which may support different data types. For example, in Hopsworks the off‐
line table uses Hive data types, while the online table uses MySQL data types.

Arrays, Structs, Maps, and Tensors
Apart from primitive data types, other data types can be stored in feature stores. For
example, arrays, structs, and maps are all supported by Hopsworks. Vector embed‐
dings are stored as an array of floats. The other main data structure in machine learn‐
ing is the tensor. A tensor is a multi-dimensional numerical data structure that can
represent data in one or more dimensions. Unlike traditional matrices, which are
two-dimensional, tensors extend to three or more dimensions. In deep learning, ten‐
sors are commonly constructed from unstructured data, such as images (3D tensors),

DAG of Feature Functions | 191



videos (4D tensors), or audio signals (1D tensors), enabling the representation and
processing of complex data formats. PyTorch is the most popular framework for deep
learning. PyTorch represents tensors as instances of the torch.Tensor class, with the
default data type being torch.float32 (torch.int64 is the default for integer tensors).
You can print the shape of a tensor using the shape attribute of torch.Tensor:
print(tensor.shape).

We typically do not store tensors in a feature store. Instead, in training/inference
pipelines, unstructured data (in compressed file formats such as png, mp4, and mp3
for images, video, and sound, respectively) is transformed into tensors when it is
read:

import torch
from torchvision import transforms
from PIL import Image
image = Image.open("path/to/your/image.png")
 
# Define a transformation pipeline to convert the image into a tensor
transform = transforms.Compose([ transforms.ToTensor() ])
image_tensor = transform(image)

It is, however, sometimes desirable to preprocess the files in a training dataset pipe‐
line that outputs tensors in files, such as .tfrecord files. TFRecord is a file format that
can natively store serialized tensors. Using .tfrecord files can reduce the amount of
CPU preprocessing needed in training pipelines by removing the need to convert
unstructured data into tensors, helping improve GPU utilization levels - assuming
CPU preprocessing is a bottleneck in the training pipeline.

Implicit or Explicit Schemas for Feature Groups
In Chapter 3, we saw how convenient it is to infer the schema of a feature group from
a DataFrame. You may already have written programs that read CSV files into Data‐
Frames in Pandas, Polars, or PySpark and noticed that they don’t always infer the
“correct” datatypes. By correct, we mean the data type you wanted, not the one you
got. For example, Pandas can infer the schema of columns when reading CSV files,
but if one of the columns is a datetime column, Pandas by default infers it is an object
(string) dtype. You can fix this by passing a parameter with the columns that contains
dates (parse_dates=['col1',..,'colN']). PySpark is not much better with CSV
files, as it assumes all columns are strings, unless you set inferSchema=True.

In production feature pipelines, it is generally considered best practice to explicitly
specify the schema for a feature group, helping prevent any type inference errors or
precision errors when inferring data types. If in doubt, spell it (the schema) out. Here
is an example for specifying an explicit schema for a feature group in Hopsworks:

from hsfs.feature import Feature
features = [

192 | Chapter 6: Model-Independent Transformations



    Feature(name="id",type="int",online_type="int"),
    Feature(name="name",type="string",online_type="varchar(2000)")
]
 
fg = fs.create_feature_group(name="fg_with_explicit_schema",
                             features=features,
                             …)
fg.save(features)

Note that you can also explicitly define the data types for the offline store and the off‐
line store as part of the feature group schema.

Credit Card Fraud Features
We now revisit our credit card fraud detection system. We start by noting the data-
related challenges in building a robust credit card fraud detection system. They
include:

• class imbalance - we have very few examples of fraud compared to non-fraud
transactions,

• non-stationary prediction problem, as fraudsters constantly come up with novel
strategies for fraud, so we will need to frequently retrain our model on the latest
data,

• data drift, where unseen patterns in transaction activity are common,
• ML fraud models are typically used in addition to rule-based approaches that

detect simple fraud schemes and patterns.

In Chapter 4, we introduced the features we want to create from our source data. We
now present the model-independent data transformations used to create those fea‐
tures. Figure 6-8 shows the feature pipeline that uses the tables (and event bus) in our
data mart as the data sources. The data mart includes credit card transactions as
events in an event bus, a fact table that the credit card transaction events are persisted
to, the four dimension “details” tables, and the table cc_fraud containing labels, see
Figure 6-7.
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Figure 6-7. Dataflow graph from the data mart to the feature groups via model-
independent transformations. Notice that some data transformations are composed from
other transformations (the input of a transformation is the output of another transfor‐
mation), and that joins bring features from different entities (cards, accounts, mer‐
chants) together.

We will now take a new approach to defining our transformation logic. Instead of
presenting the source code, we will present the prompts that I used to create the
transformation logic using a LLM. Table 6-2 shows the prompts I used to create the
transformation code in the book’s source code repository. As of early 2025, LLMs are
very good at creating working Pandas, Polars, and PySpark code. Typically, you also
have to pre-pend the logical models for your tables (see Chapter 8), so that the LLM
understands the data types and the semantics of the columns it is working with.

Table 6-2. Here are some sample prompts that can be used to create the Polars code that
creates features from our data sources.

Feature Prompt to write code for feature
chargeback_
rate_prev_week

From merchant_details, write Polars code to compute a 28 day tumbling window using
chargeback_rate_prev_week. Read up from the FG with overlap for the 28 days before our start date, as
we don’t want empty first. We want this feature function to take start/end dates, so it can both backfill
and take new data.

time_since_
last_trans

Join cc_trans_aggs_fg with cc_trans_fg using cc_num to produce DataFrame df. Then, compute
time_since_last_trans in a Python UDF using Polars by subtracting prev_ts_transaction from event_time.
Apply the Python UDF to df to compute the new feature.
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Feature Prompt to write code for feature
days_to_
card_expiry

Join card_details with cc_trans_fg using cc_num to produce DataFrame df. Then, compute
days_to_card_expiry in a Pandas UDF by subtracting event_time from expiry_date. Apply the Pandas UDF
to df to compute the new feature.

The features are a mix of simple features (copied directly from the source table), some
computed using map functions (days_since_credit_rating_changed,
days_until_expired), and a lot of features that require maintaining state across data
transformations, such as those that summarize observed events over windows of time
(like an hour, minute, or day). In particular, all the features computed for the
cc_trans_aggs_fg feature group require stateful data transformations. In Chapter 9, we
will look at how to implement these model-independent data transformations in
streaming feature pipelines.

There are many other data transformations that are not included in our credit card
example system. Some examples of useful prompts that you can use to create data
transformations are shown in Table 6-4.

Table 6-3. Prompts that produce data transformation code to create features.

Transformation Example LLM Prompt
Data Cleaning Write code to remove missing values for column Y in DataFrame df.
Filtering Write code to read columns a, b, c from the data source into a DataFrame. Filter out rows where the

event_time is greater than Jan 1st 2025.
Grouped
Aggregations

Write code to group the rows in DataFrame df by column X and then compute the min/max/average/
median/standard deviation for column Y

Binning Write code to compute 10 bins for the numerical feature Y in DataFrame df, where each bin should
have a roughly equivalent number of entries.

Left Join Write code to join DataFrames df1 and df2 using merchant_id as the join key. df1 should have more
rows, and if there is no matching join key in df2, include nulls for the missing column values.

Inner Join Write code to join DataFrames df1 and df2 using merchant_id as the join key. If there is no matching
join key in df2 for a row in df1, do not include that row in the output DataFrame.

Lagged Feature Write code to create a lagged feature, pm25_1day, for pm25 in the air_quality DataFrame.
Temporal Feature
Extraction

Write code to extract the date from the event_time column in DataFrame df. The date format should
be ‘YYYY-MM-DD’.

Data Compression Write code that downloads the sentence_transformers embedding model from Hugging Face, and uses
it to encode the string column Y in DataFrame df.

Sometimes the code generated has bugs. For example, sometimes GPT-4o halluci‐
nates that Polars DataFrames support the widely used Pandas DataFrame apply func‐
tion, used to apply a UDF to the DataFrame. When I get errors, I paste the error log
into my LLM’s prompt and ask it to fix the bug. Generally, this works. But you still
need to understand the code produced. Ultimately, you sign off on the code being
correct. For this reason, unit testing your feature functions becomes even more criti‐
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cal. Again, I use LLMs to generate the unit tests for the feature functions I write.
Again, I inspect the generated unit tests for correctness before I incorporate them.

Composition of Transformations
In batch pipelines, we often compute aggregations (such as min, max, mean, median,
standard deviation) over a window of time, such as an hour or a day. Often more than
one time window contains useful predictive signals for models. For example, we
could compute aggregates once per day, but also trailing 7-day and trailing 30-day
aggregates, as shown in Figure 6-8.

Figure 6-8. We can compute single-day and multi-day aggregations in the same feature
pipeline. Multi-day aggregations combine the current daily aggregation with the histori‐
cal daily aggregations read from the feature store.

Ideally, we should compute the larger windows (30-day, 7-day) from the smallest win‐
dow (1-day), reducing the amount of work needed to compute aggregations.
Table 6-4 shows how to compute popular aggregations for larger windows from
smaller windows.

Table 6-4. Most multi-day aggregations can be computed from 1-day aggregations, resulting
in large computation savings. Sometimes, however, they need additional state to be
computed.

Aggregation How to compute 7-day aggregations from 1-day aggregations
count Sum the previous 7 days together.
sum Sum the previous 7 days together.
max/min Get the max/min over all the previous 7 days.
standard deviation We need to compute and store additional daily data. For each day, we also need the count of records.

Then, we can compute the 7-day aggregate using the sum of squares.
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Aggregation How to compute 7-day aggregations from 1-day aggregations
mean We need to compute and store additional daily data. For each day, we also need the count of records.

Then, we can compute the 7-day aggregate as a weighted mean.
approxQuantile We need to compute and store complete sorted lists of daily values. With approximate summaries like T-

Digests or histograms, 7-day quantiles can be approximated by merging daily distributions.
distinct count For an accurate result, we need to store the unique values for each day and perform a set union.

Approximate answers are possible with HyperLogLog (memory efficient, but worst accuracy) or Bitmap/
Bloom Filters (moderate memory efficiency, better accuracy)

For example, in PySpark, we can compute a multi-day mean using the weighted man
approach. The sum-of-squares is an alternative approach we could have used, but it
requires an additional column storing the sum of squares, so we prefer the weighted
mean approach as it requires one less column to store in our daily aggregations fea‐
ture group. The PySpark code looks as follows:

def compute_mean(days):
    window_spec =
        Window.partitionBy("user_id").orderBy("date").rowsBetween(-days, 0)
        df = df.withColumn(f"{days}d_avg",
        F.sum(F.col("daily_mean") * F.col("daily_count")).over(window_spec) /
        F.sum("daily_count").over(window_spec)

Summary
In this chapter, we introduced some fundamentals for writing model-independent
transformations in feature pipelines. There were extensive preliminaries on how to
organize the source code for your system in a monrepo, what the common data sour‐
ces for feature pipelines are, and the data types you need to work with when writing
feature pipelines. We looked at how we should wrap data transformations in feature
functions to make features testable and easier to maintain. We finally introduced
examples of model-independent data transformations for our credit card fraud sys‐
tem, including binning for categorical data, mapping functions, RFM features, and
aggregations.

Exercises
• You are tasked with developing a credit card fraud detection AI system. The

credit card issuer estimates that there will be at most 50k transactions per day for
the current year, growing to at most 100k transactions per day for the next 2
years. You have 12 months of historical transaction data. Your team does not
have a strong data engineering background. Your data mart tables are stored on
Iceberg on S3. Motivate which data engineering framework you would choose for
writing your batch feature pipelines?
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• Answer the previous question again, but this time when data volumes are 10 mil‐
lion transactions per day.

• Assume you have a new column email in the account_details table. Use a LLM to
help write a feature function that transforms an email address into a numerical
feature that represents the quality of the email address. Hint, use a LLM and tell it
to use the email-validator Python library and tell it to use the email address
domain name to help determine the “score” for the email address.
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